Beiträge mit dem Schlagwort Cognitive Computing

Data Science mit der Microsoft Azure Cortana Intelligence Suite

Erstellt am: Donnerstag, 1. Juni 2017 von Monika Düsterhöft
Kaum eine Business-Nachricht heutzutage ohne die Schlagworte Künstliche Intelligenz, Big Data, Advanced Analytics, Machine Learning. Es heißt, die Geschäftswelt wird sich schon bald komplett ändern – und tatsächlich hat die Zukunft bereits begonnen. Erst kürzlich verkündete Microsoft der Welt seine Vision und sein Credo, künstliche Intelligenz zu demokratisieren, damit jeder von ihr nicht nur profitieren kann, sondern auch soll. Spätestens jetzt sollte man sich als Unternehmer oder als Teil eines Unternehmens Gedanken machen, wie er an dieser gleichermaßen faszinierenden wie auch ein wenig erschreckenden neuen Welt nicht nur teilhaben kann, sondern auch wird.

 

Aber wie? Eine nähere Betrachtung des Themas zeigt schnell, dass es vor allem auf Use Cases ankommt, die sich ein Unternehmen überlegen und die es definieren muss. Ebenso muss das Ziel einer Big Data-Initiative klar sein, und damit auch, was man durch entsprechende Anwendungen prognostizieren und damit erreichen will. Daran anschließend drängen sich weitere Fragen auf: Wie kann ich mein Big Data- oder Advanced Analytics-Vorhaben in die Tat umsetzen? Welche Voraussetzungen müssen gegeben sein? Wie groß sind die Hürden für eine Umsetzung? Statt nur zu vermuten, was die Kunden über meine Produkte denken, will ich es wissen! Ich will präzise Voraussagen treffen können, ob und wann meine Kunden Interesse entwickeln oder wann ich Gefahr laufe, sie zu verlieren. Dies gelingt umso besser, je mehr möglicherweise kundenrelevante Informationen einbezogen werden können, beispielsweise aus den sozialen Medien oder aus Nachrichten-Feeds. Diese wertvollen Informationen will ich sodann mit meinen vorliegenden Geschäftsergebnissen „verheiraten“, um auf dieser Datenbasis fundierte und zuverlässige Geschäftsentscheidungen treffen zu können. 

 

Erfahrung mit der Microsoft Azure Cortana Intelligence Suite

Kann diesbezüglich Microsoft sein Versprechen halten? Sind die Komponenten der Microsoft Azure „Cortana Intelligence Suite“ wirklich geeignet, um Big Data-Vorhaben umzusetzen? Zunächst einmal ist das Angebot des Herstellers Cloud-basierend und komplett für den Nutzer administriert, d.h. man benötigt keine eigene Hardware oder Mitarbeiter, sondern nutzt vollständig verwaltete Dienste. Ferner lassen sich mit Hilfe der neuen „Azure Logik Apps“ auch die genannten sozialen Medien problemlos anzapfen, und das ganz ohne zusätzlichen Programmieraufwand. Einfach ist in der Praxis auch die Analyse des daraus entstandenen Datenstroms, etwa um Trends zu erkennen. So kann man beispielsweise für eine Stimmungsanalyse das „Text Analytics API“ –  ein Baustein der sogenannten Cognitive Services – verwenden, mit dessen Hilfe sich auch Schlüsselbegriffe aus dem Text ermitteln lassen. Und dies ist nur eine Option von vielen auf Machine Learning basierenden Bausteinen aus dem Microsoft-Angebot.

Werkzeuge für den Data Scientist

Für die Arbeit als Data Scientist findet sich das „Azure Machine Learning Studio“, eine sehr komfortable und benutzerfreundliche Anwendung, die sämtliche Schritte des Data-Science-Prozess per Drag & drop komponieren hilft. Neben vielen Methoden zur Unterstützung der Datenvorbereitung, bietet Azure ML Out of the box auch alle gängigen Machine-Learning-Modelle aus den Gebieten „Supervised“ sowie „Unsupervised Learning“ – von einfachen Classification-Modellen über Neuronale Netzwerke bis hin zum K-Means Clustering. Bereits vorhandene, in R oder Python entwickelten Scripts oder präferierten Modelle kann der Data Scientist ebenfalls einfach integrieren.
Flexibilität bietet Microsoft auch bei der Speicherung des Datenstroms plus Analyseergebnisse. Eine Option ist die Ablage in einem schier unbegrenzten Data-Lake-Speicher, auf dem der Anwender mit Hilfe der „Data Lake Analytics“ und U-SQL weitere Analysen vornehmen kann. Gleichfalls möglich ist eine Speicherung strukturierter Daten in einer Azure SQL-Datenbank oder einem Datawarehouse oder es lassen sich Daten auch direkt für den Endanwender interaktiv visualisiert per „Power BI“ bereitstellen.

Der Weg in die schöne neue Welt ist also keineswegs erschreckend schwierig, sondern mit einem Schritt ist man schon heute mitten drin! Dabei stellen die genannten Möglichkeiten nur ein Bruchteil dessen dar, was mit der „Azure Cortana Intelligence Suite“ bereits heute möglich ist. Für perfekt passende Szenarien sind der Fantasie dabei keine Grenzen gesetzt. Die Experten von QUNIS stehen Ihnen dabei mit Rat und Tat zur Seite! Sei es durch ein kostenfreies Advanced-Analytics-Webinar oder im Rahmen eines Big-Data-Workshops. Wir können Ihnen in jedem Fall dabei helfen, unternehmensspezifische Business Cases zu identifizieren, ein passendes Szenario mit Ihnen abzustimmen und dieses nachfolgend im Rahmen eines Proof of Concept auch gleich zu verproben.

Weitere Beiträge zur Nutzung von Big Data und Advanced Analytics finden Sie auf unserem Blog der Bigdata Factory!