Das Data Warehouse fasziniert mich unverändert stark seit Anbeginn meines professionellen Lebens – und das sind mittlerweile immerhin schon über 25 Jahre! Das vielleicht Bestechendste an ihm ist, dass es über die Jahre nichts von seiner hohen Relevanz für Unternehmen verloren hat, die durch es fundierte und lukrative Geschäftsentscheidungen treffen können.
Seine Unverzichtbarkeit wird dabei sofort klar, wenn man betrachtet, was es per se ist: ein strukturiertes, konsolidiertes, stabiles und stets aktuelles Fundament, dessen Bestimmung es ist, aus all den verschiedenen Daten eines Unternehmens wertschaffende Informationen zu machen. Vor allem aber – und gerade heutzutage immens wichtig – ist es nicht zuletzt auch essentieller Basisbaustein für alle Advanced Analytics oder Big Data Vorhaben.
Probleme bei schlecht aufgebauten Data Warehouse Lösungen
Und wenn man mal genau hinschaut, besitzt auch jedes Unternehmen de facto ein Data Warehouse, wenn nicht gar mehrere. Denn alle Versuche, Daten aus den ERP- und anderen Systemen regelmäßig gesammelt zu extrahieren und in einer anderen Anwendung aufzubereiten, um damit eine Auswertung zu machen, sind Praktiken, die eindeutig dem Datawarehousing zuzuordnen sind. Allerdings kann mangelnde Professionalität beim Umgang mit ihnen zu vielen Problemen führen. Diese reichen von einer mangelnden Revisionssicherheit, über sich verselbständigende und mannigfaltig verschiedentlich interpretierte Geschäftsregeln, multiple und subjektiv getriebene Interpretationen der Unternehmenskennzahlen bis hin zu historisch gewachsenen, heterogenen Landschaften, deren Entwirrung sich niemand mehr zutraut.
Ein gleichermaßen professionell fundiertes, hochqualitatives wie auch effizientes Vorgehen mit Blick auf bester Performance ist somit unverzichtbar, will man einen Datenpalast und nicht eine windschiefe Informationshütte bauen. Und so wie es beim Bau eines Palastes in vielen Jahrhunderten bewährte Praktiken und Strategien gibt, so gibt es beim Bau eines Data Warehouse in vielen Jahren bewährte Best Practices, Strategien und Techniken, die bei fachgerechter Anwendung zum Erfolg führen.
Geballtes Wissen und Best Practices für das Data Warehouse
So haben wir mit dem „QUNIS Data Warehouse Framework“ ein Rahmenwerk, also ein Framework geschaffen, das aus vielen grundsoliden Bausteinen für den Bau eines „State of the Art“ Data Warehouse besteht, das die Essenz all unserer Best Practices, Strategien, Methoden und Techniken enthält. Mit Hilfe dieses Baukastens ist es nicht nur möglich, ein hochqualitatives, performantes und vor allem stabiles Data Warehouse in kürzester Zeit zu schaffen – etwas, was bis vor kurzem noch als langjähriges Projekt und für kleine Unternehmen unvorstellbar galt – sondern sich – was vielleicht sogar noch wichtiger ist – auf einen sicheren Erfolg und schnellen ROI verlassen kann.
Wir haben an alles gedacht, auf was es beim Datawarehousing und zugehöriger Datenbewirtschaftung ankommt. Das „QUNIS Data Warehouse Framework“ bietet viele Benefits, angefangen bei der Konsolidierung, Plausibilisierung und Konsistenzprüfung der Quellsystemdaten über die attributgenaue Historisierung, bis hin zur passgenauen Bereitstellung fach- oder themenspezifischer Data Marts mit zahlreichen verwaltungs- und wartungsoptimierenden Leistungsmerkmalen.
Data Warehouse auch für kleine und mittelständische Unternehmen
Mit diesem Baukasten ist es nun auch kleinen und mittelständischen Unternehmen ein Leichtes, sich ein eigenes und vor allem mittelfristig enorm kostensparendes Data Warehouse zu entwickeln, das die Konkurrenzfähigkeit am Markt enorm steigern kann – insbesondere und mit immer zunehmender Bedeutung im heutigen Informationszeitalter. Das Bestechende an diesem Baukasten ist seine modulare Struktur sowie das große Maß an Flexibilität, das damit möglich bleibt. Ganz bewusst handelt es sich um ein Data Warehouse Framework. Auf das stabile Fundament, das Core bzw. also Herz des Data Warehouses ist unbedingt Verlass, die dekorative Verzierung in Form von Data Marts ist in hohem Masse individuell gestaltbar, ohne jedoch auch hier auf Stabilität, bewährte Vorgehensmodelle und Best Practices zu verzichten. Weitere Informationen zum QUNIS Data Warehouse Framework finden Sie hier.