Beiträge mit dem Schlagwort Reporting

Vom guten Sinn eines Data Warehouse

Erstellt am: Freitag, 13. Oktober 2017 von Monika Düsterhöft

Natürlich kann ich meine Business Intelligence Reports, Ad-hoc-Abfragen und Analysen, ja sogar Self Service BI direkt auf Basis meines ERP-Systems erstellen bzw. durchführen. Dass diese Praxis jedoch ihre natürlichen Grenzen hat, merke ich spätestens, wenn die ERP-Anwender in Scharen zu mir strömen, um sich über fehlende Performance bei ihren Erfassungsarbeiten zu beschweren.
Oder aber dann, wenn ich – da ich ja für meine Reports nicht nur Daten aus einem System benötige, sondern auch diverse Ergänzungen und Zusatzberechnungen in meinen Reports unterbringen muss – mir ein nahezu unentwirrbares System aus zusätzlicher Logik gebastelt habe, welches ich mir für weitere Auswertungen im schlimmsten Fall immer wieder neu konstruieren muss.

Steigender Aufwand im Reporting ohne ein Data Warehouse

Auch macht mich die stetig zunehmende Aktualisierungsdauer meiner Reports alles andere als glücklich. Dass meine Berichte zwangsläufig immer langsamer laufen, da die Komplexität meiner Abfragen darin stetig zunimmt und ich immer mehr zusätzliche Logik darin verbaut habe, ist mir sehr wohl bewusst. Indes sehe ich bei meiner über die Jahre gewachsenen Landschaft mittlerweile kein Entrinnen mehr. Heißt es nicht: Never change a running System?
Ein weiterer schlimmer Nebeneffekt ist, dass ich einmal erzeugte Reports auf ewig aufheben muss, da ich diese Auswertung im Bedarfsfall nicht mehr zu einem bestimmten Stichtag wiederholen kann, denn die Daten haben sich mittlerweile geändert. Einmal gültige Zuordnungen, beispielsweise von Vertretern zu Kunden, sind Schnee von gestern und heute nicht mehr gleichermaßen zugänglich.

Data Warehouse mit praxiserprobter Methode aufbauen

All dies und noch unzählige weitere gute Gründe sollten Anwender darüber nachdenken lassen, was ein solides Data Warehouse für einen Wert bedeutet. Insbesondere wenn es auf einem so wohldurchdachten und nachhaltigen Konzept wie bei der QUNIS basiert. Zeit also, die eigene Business-Intelligence-Landschaft endlich auf stabile und profitable Beine zu stellen!
Wir von der QUNIS haben aufgrund all dieser Erfahrungen aus unzähligen erfolgreichen Projekten ein „Data Warehouse Framework“ geschaffen, das all die beschriebenen Probleme und Stolpersteine beseitigt. Es umfasst alle notwendigen Strategien und Methoden, mit denen sich die Daten in einem Data Warehouse optimal strukturieren, die bestmögliche Verarbeitungs- und Abfrage-Performance sowie eine umfassende Datenversionierung erzielen lassen, um jederzeit historisch korrekte Reports und vieles mehr zu erzeugen.

Neugierig geworden? Dann lassen Sie sich von unserer ganzheitlichen Methodik überzeugen! Rufen Sie uns doch einfach einmal unverbindlich an oder schreiben Sie uns eine Email! Wir freuen uns auf Ihre Anfrage!

Phone +49 8035 95790 0,
E-Mail info@qunis.de

Weitere Beiträge zum Thema:

Self Service Business Intelligence mit Microsoft Power BI

Erstellt am: Montag, 26. Juni 2017 von Monika Düsterhöft
Power BI ist Microsofts strategische Antwort auf den Wunsch in Anwenderorganisationen nach mehr Self Service in der Business Intelligence (BI). Informationsmitarbeiter sollen künftig ohne einen aufwändigen technologischen Unterbau flexibel an der Nutzung und Analyse von Daten partizipieren können, um so das Potenzial von BI besser auszuschöpfen. Um diesen Anspruch gerecht zu werden, wollte Microsoft ein leistungsfähiges Tool mit modernen Visualisierungsmöglichkeiten und starken Analyse-Features entwickeln, welches einfach zu bedienen ist und zugleich umfangreiche Kollaborationsmöglichkeiten für Informationsmitarbeiter bietet. Zugleich musste es aber auch für individuelle Anforderungen offen bleiben.

 

Das Ergebnis war Power BI. Die Software ist als Cloud-basierende Lösung konzipiert, kann aber ebenso On-Premises betrieben werden. Sie verfügt über eine weitreichende Office-365-Integration sowie offene Schnittstellen für eigene Entwicklungen. Nutzern steht damit ein umfangreiches Self-Service-BI-Tool zur Datenmodellierung, Analyse und Reporting zur Verfügung, das zudem regelmäßig aktualisiert wird. Power BI reiht sich sehr gut in das bestehende Microsoft-Portfolio ein und wird kontinuierlich weiterentwickelt. Zudem hat sich eine sehr aktive Community gebildet.

 

Berichte visuell ansprechend gestalten

Der übliche Entwicklungszyklus eines Power-BI-Berichtes beginnt in „Power BI Desktop“. Hierbei handelt es sich um die Desktop Applikation von Power BI. Sie verfügt über eine breite Palette an Datenkonnektoren, deren Umfang kontinuierlich erweitert wird. Hier ist auch der Platz, an welchem die Datenmodellierung unter Verwendung der Power-Query-Sprache „M“ stattfindet. Entsprechend dem eingesetzten Architekturszenario – QUNIS sieht hier vier mögliche Architekturvarianten – können die Daten aus der Cloud und oder von On-Premises- Systemen stammen. Sind die Daten nach Bedarf modelliert, lässt sich der Bericht erstellen. Dabei stehen im Standard mehr als 25 Visualisierungsmöglichkeiten zur Auswahl (Über 70 weitere Visualisierungen sind aktuell noch kostenfrei im Web erhältlich). Ist der Bericht vollendet, wird er üblicherweise im „Power BI Service“ in der Cloud oder in einer On-Premisis-Umgebung veröffentlicht. Diese Berichte lassen sich anschließend in Dashboards verwenden oder mit weiteren Usern teilen.

In dem von QUNIS definierten Frontend-Rollenkonzept deckt Power BI drei von vier vorhandenen Rollen ab. Es ist demnach ein passendes Tool für „End User“, „Ad Hoc User“ und „Power User“. Diese Rollen müssen immer unter Berücksichtigung der unternehmensinternen BI Governance identifiziert und besetzt werden, andernfalls kann es rasch zu einem unkontrollierbaren Berichtswildwuchs kommen (eine Übersicht zu den von der QUNIS in Projekten genutzten Software und Technologien finden Sie hier).

 

Ad-hoc Anforderungen effizient umsetzen

Power BI zeigt seine besondere Stärke, wenn es um Ad-hoc-Anforderungen mit einem hohen Bedarf an Visualisierung geht, und dass sowohl in der BI als auch im Big-Data-Umfeld. Es lässt sich damit auch für Ad-hoc Reporting sehr gut verwenden. Seine umfangreichen Datenkonnektoren spielen dabei eine wichtige Rolle. Ebenso sind Standardreporting und Dashboarding mit Power BI gut umsetzbar, aber es existieren leistungsfähigere Alternativen für dieses Spezialszenario – wie beispielsweise die Reporting Services von Microsoft. Ferner fehlt bis jetzt eine umfangreiche Parametrisierbarkeit und das Zusammenspiel der einzelnen Berichte könnte abgestimmter sein. Die heute noch fehlenden Funktionen verhindern jedoch keineswegs die einfache Nutzbarkeit der Software gemäß dem Self-Service-Gedanken.

 

Integration mit den Microsoft Reporting Services

Ein weiterer wichtiger Aspekt von Power BI ist die Integration auf Applikationsebene. Z.B. können Anwender Berichte, die mit den „Microsoft Reporting Services“ erstellt wurden, in den Power BI Services veröffentlichen und genauso funktioniert es auch andersherum. Wurden die Power-BI-Berichte im „Microsoft Report Server“ vormals lediglich als statisches Kachelsymbol dargestellt, so sind sie mittlerweile als Power-BI-Berichtsdatei verteilbar, und auch Dashboard-Elemente finden nun in Reporting-Services-Berichten Platz. Zukünftig soll eine vollständige Integration von Power-BI-Berichten in den Reporting Services möglich sein, womit Power BI als reine On-Premises-Lösung mit vollem Funktionsumfang betrieben werden könnte. Darüber hinaus bietet Power BI noch weitere Integrationsmöglichkeiten, wie zum Beispiel in die Software „BI Office“ von Pyramid Analytics oder in SharePoint, wenngleich hier noch Nachholbedarf besteht. Sehr hilfreich und beliebt ist die Integration in PowerPoint, wodurch Berichte und Dashboards mit nur wenigen Mausklicks und in ihrer gesamten Interaktivität in eine Präsentation eingebunden werden können. Damit zeigt sich, dass Power BI nicht nur im Cloud Umfeld nutzbar ist, sondern auch als On-Premises-Lösung, die schon heute gut mit anderen Applikationen interagiert.

 

Abschließend lässt sich sagen, dass Microsoft mit Power BI ein sehr interessantes Tool am Markt erfolgreich etabliert hat, dass sich durch eine starke Community schnell weiterentwickelt, immer mehr Anforderungen der Nutzer abdeckt und in Folge dessen ein ernstzunehmendes Produkt für Anforderungen in der BI aber auch im Big-Data-Umfeld darstellt. Der vollständige Funktionsumfang steht allerdings nur in der lizenzpflichtigen Pro Version zur Verfügung. Für das Microsoft Portfolio ist Power BI eine moderne Ergänzung, die sich als eigenständiges Self Service BI Tool sowohl in die bestehende Cloud- und On-Premises-BI- als auch Big-Data-Produktpalette des Anbieters integriert.

 

Weitere Blog-Beiträge, die Sie interessieren könnten:

Die Suche nach der passenden Business Intelligence Strategie

Erstellt am: Donnerstag, 18. Mai 2017 von Monika Düsterhöft

Anwendungen für Business Intelligence (BI), beispielsweise für Reporting und Analyse, sind heute aus den Unternehmen nicht mehr wegzudenken. Da sie eine hohe strategische und damit wirtschaftliche Bedeutung für die Unternehmenssteuerung haben, sollten sie nicht wahllos und ungesteuert eingeführt und betrieben werden. Dennoch zeigt die QUNIS-Beratungspraxis, dass Business Intelligence oftmals noch „nebenher“ läuft. Ebenso scheitern häufig die ersten Versuche, Business Intelligence im Unternehmen einzuführen, weil eben keine BI-Strategie definiert wurde. So ist in solchen Organisationen beispielsweise unklar, wer für BI im Haus verantwortlich ist oder man erkennt nicht, dass es für BI eigener Ressourcen und einer BI-Organisation bedarf.

Business Intelligence und Unternehmensstrategie gehören zusammen

Damit sich dies ändert, gilt es zunächst einmal zu verstehen, dass eine BI-Strategie die Unternehmensstrategie maßgeblich unterstützen kann. Danach ausgerichtet sind die drei wichtigsten Facetten einer BI-Strategie zu beachten: Die Fachliche, die Technologische sowie die Organisatorische. Bei der fachlichen Facette ist u. a. Voraussetzung, dass die fachlichen Anforderungen in einem Konzept niedergeschrieben werden und man sich über einheitliche Kennzahlendefinitionen einig ist. Je nach Anforderung wir sich für eine passende Infrastruktur entschieden, welche die technologische Basis für das BI System bildet. Letztendlich ist Business Intelligence auch in die Organisation einzubetten und setzt für die Einführung und Weiterentwicklung entsprechende Prozesse voraus.

Hilfe bei der Definition und Umsetzung der Business-Intelligence-Strategie

Hilfe bei der Strategiefindung bietet das „QUNIS BI und Big Data Strategie Framework“, das eine aus langjähriger Projekterfahrung abgeleitete detaillierte Methodik mit zahlreichen Best Practices und modernen Umfrageverfahren vereint. Gemeinsam mit dem Kunden entwickelt die QUNIS nach sechs Aspekten gruppiert die Fachkonzeption, diskutiert Architektur & Technologie und klärt Organisationsfragen (zum Beispiel Rollen und Verantwortlichkeiten). Aus diesen strukturierten und gewichteten Vorgaben wird nachfolgend die Strategie für Business Intelligence, Advanced Analytics oder Big Data definiert. Ziel ist die Entwicklung einer BI Roadmap für die zukünftige Lösung. Im Ergebnis wird sich später für eine Big-Data-Lösung für gewöhnlich eine andere Systemarchitektur als für die BI-Lösung ergeben (mehr Informationen zum Vorgehen in Big-Data-Projekten finden Sie hier). Aber genau aus diesem Grund ist es so wichtig, die Anforderungen vorher mit dem Kunden zu erarbeiten.

Folgende Blog-Beiträge der QUNIS zum Thema könnten für Sie auch interessant sein:

Mehr Business Intelligence und Datenmanagement in der Cloud

Erstellt am: Montag, 20. März 2017 von Monika Düsterhöft
Das Interesse an der Nutzung von Software für Business Intelligence (BI) und Datenmanagement (DM) in der Cloud wächst. Zu diesem Schluss kommt eine internationale Umfrage vom BARC und der Eckerson Group. Teilnehmer waren laut der Autoren 370 IT-Verantwortlichen aus Anwenderunternehmen, die Business Intelligence und Datenmanagement im Einsatz haben. Danach ist in den Jahren 2013 bis 2016 der Einsatz entsprechender Cloud-Lösungen von 29 Prozent auf 43 Prozent der offenbar in diesem Vergleichszeitraum befragten Unternehmen gestiegen. Dies wäre eine Steigerung von 50 Prozent über die letzten drei Jahre.
Als wichtigste Vorteile von BI- und DM-Lösungen aus der Cloud nennen die Befragten die Flexibilität, geringeren Kosten (Keine Installation, keine Hardwarekosten u.a.) und Skalierbarkeit (nach Bedarf), die solche Angebote mit sich bringen. Der von den Studienteilnehmern mit Abstand am häufigste genannte Anwendungsfall von Cloud-BI-Werkzeugen ist die Bereitstellung von Reports und Dashboards (76 Prozent) – typischerweise ein Einsatzfeld für gelegentliche Nutzer.

 

Ad-hoc Analysen, Reporting und Dashboards in der Cloud

Viele Tätigkeiten in der Cloud ausgeführt sind aber laut der Autoren deutlich komplexer und werden vor allem von erfahrenen Power Usern vorgenommen. Letztere sind auch die häufigsten Nutzer von Cloud-Lösungen, denen es im Vergleich zu den gelegentlichen und ggf. weniger versierten Nutzern leichter fällt, sich für die Software-as-a-Service (SaaS) BI-Lösung ein Konto einzurichten, Daten hochzuladen sowie Daten zu analysieren und visualisieren. Am häufigsten werden Tools für Ad-hoc-Analysen (57 Prozent), das Erstellen von Reports und Dashboards (55 Prozent), für Data Preparation (39 Prozent) sowie Advanced- und Predictive Analytics (23 Prozent) genutzt.
Der Aufbau Cloud-basierter Data-Warehouse-Lösungen, von Data Marts oder die Nutzung von Datenintegrationswerkzeugen erfolgt hingegen bis dato im Vergleich zu den BI-SaaS-Anwendungen noch seltener. Den Grund dafür wollen die Autoren darin sehen, dass für den Aufbau solcher DM-Umgebungen mehr Aufwand in die Bereitstellung von Infrastruktur- und Plattform Services zu leisten sei. Hinzu kämen Anforderungen in punkto Sicherheit, Datenschutz sowie interne Auseinandersetzungen, die einer Verlagerung in die Cloud erschweren. QUNIS hilft Unternehmen beim Aufbau von BI- und Big-Data-Lösungen in der Cloud, beispielsweise mit Microsoft Azure Cloud, und hat dabei gute Erfahrungen gemacht. So lassen sich die benötigten Komponenten schnell und kostengünstig installieren und die Bandbreite der verfügbaren Infrastrukturkomponenten bis hin zu Umgebungen für Machine Learing ist heute bereits sehr groß. Weitere Informationen finden Sie hier.

 

Business Intelligence in der Public Cloud

Fast die Hälfte der Unternehmen, die Cloud BI nutzen, verwenden die Public Cloud (46 Prozent) für BI und Datenmanagement, weniger als ein Drittel (30 Prozent) setzt auf die Hybrid Cloud und 24 Prozent nutzen die Private Cloud. Die Public Cloud werde laut Studie hauptsächlich von Organisationen vorangetrieben, die BI-Umgebungen erstellen möchten, die keine On-Premise-Daten erfordern, und von Organisationen, die die Cloud verwenden, um ältere Data Warehouses zu ersetzen, erklärten die Autoren. Mit der Cloud lagern Unternehmen ihre Hardware-Infrastruktur automatisch an einen Dritten aus. Aber viele Unternehmen gehen noch weiter. Fast zwei Drittel der Befragten setzen beim Hosting ihrer Cloud-BI-Lösung auf BI- oder DM-Anbieter. Ein Viertel lässt seine Cloud-BI-Umgebung extern betreiben und verwalten, 16 Prozent lassen ihre Cloud-BI-Anwendung sogar von den Anbietern entwickeln.
Die gesamte Studie kann bei Sponsoren wie Jedox kostenfrei nach der Registrierung heruntergeladen werden.

Hohe Anforderungen an ein modernes Reporting

Erstellt am: Donnerstag, 13. Oktober 2016 von Monika Düsterhöft

Konsolidierung, Datenbeschaffung, Plausibilisierung und Abstimmung sowie die Berichtserstellung sind die typischen Phasen, die ein Reporting durchläuft. Die dazugehörigen Prozesse sollen heute so flexibel sein, dass sich neue Anforderungen schnell und ohne größeren Aufwand umsetzen lassen. Doch glaubt man der diesjährigen Lünendonk-Untersuchung „Der Markt für Business Intelligence und Business Analytics in Deutschland“ ist dies lediglich in 37 Prozent der insgesamt 70 befragten Unternehmen heute der Fall (2014: 54 Prozent). Stattdessen sind viele Standardaufgaben im Reporting nur ungenügend automatisiert und integriert. Durchschnittlich 67 Prozent der zur Verfügung stehenden Zeit entfallen auf diese Phasen.

Operational Business Intelligence
Da immer mehr Geschäftsprozesse und -modelle digital gesteuert und Marktzyklen kürzer werden, besteht also Handlungsbedarf. Strategische und operative Entscheidungen müssen sich künftig immer häufiger zeitnah auf der Basis analysierter Datenmengen treffen lassen können (operational BI). Und nicht nur die bisherigen Prozesse sind laut Lünendonk häufig noch (oder wieder) zu unflexibel, sondern auch die Qualität und Detailtiefe der Reports lasse zu wünschen übrig. So erklärte mit 44 Prozent (2014: 64 Prozent) weniger als die Hälfte der befragten Unternehmen, man würde qualitativ hochwertige Reports erstellen.

Andererseits seien laut Lünendonk vielerorts Anstrengungen im Gang, das Reporting in den kommenden Monaten zu optimieren. Etwa bezüglich der Automatisierung: 36 Prozent der Unternehmen müssen aktuell noch manuelle Eingriffe in den Reporting-Prozess vornehmen. Bereits in den zwei Jahren sollen es nur noch 29 Prozent sein.

Etwas weiter sind die befragten Unternehmen hinsichtlich der Standardisierung ihres Reportings. Aktuell können bereits 47 Prozent der Unternehmen auf vordefinierte Berichtsvorlagen zurückgreifen. Nur 24 Prozent der Befragten erklärte, Berichte würden immer noch erst auf Anfrage neu erstellt. In den kommenden zwei Jahren wollen 79 Prozent der Unternehmen standardmäßig auf vordefinierte Berichtvorlagen zurückzugreifen.

Reporting häufig als Insellösung
Eine zusätzliche Herausforderung im Reporting sind laut Lünendonk viele noch existierende Insellösungen. Knapp 60 Prozent der Befragten erklärten, dass ihr Berichtswesen dadurch aktuell keinen einheitlichen Blick auf das Unternehmen ermöglicht.  Beklagt wurde ferner von mehr als der Hälfte der Umfrageteilnehmer der Mangel an Experten mit speziellem technischen und Branchenwissen, und auch eine stärkere Verzahnung des Berichtswesens der Fachbereiche sei für jeden zweiten Befragten noch nicht erreicht. Letztere sei aber Voraussetzung für eine integrierte Unternehmenssteuerung, in der Kennzahlen und Datenauswertungen der einzelnen Fachbereiche im Sinne eines unternehmensweiten Ansatzes genutzt werden können.