Archiv für die Kategorie Advanced Analytics

Trends bei Nutzung von Big Data 2018

Erstellt am: Dienstag, 6. März 2018 von Sascha

Nach Einschätzung der Marktforscher von IDC wird der weltweite Umsatz mit Software, Hardware und Services für Big Data und Big Data Analytics in den kommenden zwei Jahren auf 203 Milliarden US-Dollar steigen. Das jährlich zu den bereits vorhandenen Datenbergen hinzukommende Datenvolumen könnte laut der Auguren im Jahr 2025 bereits bei 180 Zetabyte liegen. Gewaltige Datenmengen und viele Chancen für Unternehmen, neue oder detailliertere Informationen zu extrahieren und für die Unternehmens- und Prozesssteuerung, Planung oder Produktentwicklung einzusetzen.

Prescriptive Analytics

Unter den vielen Aspekten, die im Zusammenhang mit der Nutzung von Big Data und Advanced Analytics diskutiert werden, finden sich einige Entwicklungen, die laut Marktbeobachtern in den kommenden zwölf Monaten besondere öffentliche Aufmerksamkeit erfahren werden.
So wird erwartet, dass das Interesse an Prescriptive Analytics steigt. Es vereint Verfahren des Machine Learning, Simulationen und mathematische Berechnungen, um bei einer bestimmten Fragestellung die optimale Lösung oder das beste Ergebnis unter verschiedenen zur Auswahl stehenden Möglichkeiten zu ermitteln. Praktisch werden also beispielsweise kontinuierlich und automatisch neue Daten verarbeitet, um die Genauigkeit von Vorhersagen zu erhöhen und bessere datengetriebene Entscheidungsoptionen zu bieten. Prescriptive Analytics könnte so neben Cognitive Computing den Mehrwert bei der Analyse von Big Data künftig erheblich steigern helfen.

ECM und Big Data

Big Data ist ein Sammelbegriff, der in der Praxis sowohl vorhandenen Daten, etwa aus einem Data Warehouse oder ERP-System, als auch neue Datenquellen einbezieht. Diese können dabei durchaus auch innerhalb der eigenen Unternehmensgrenzen liegen. So wird für 2018 erwartet, dass sich Organisationen mehr für historische Daten und Dokumente interessieren werden, die bislang nicht in einer digitalen Form vorliegen. In diesen können wichtige Informationen liegen, die zum Beispiel für Voraussagen hilfreich sein können. Damit zeichnet sich hier eine Entwicklung ab, die wir auch bei QUNIS sehen, nämlich der Annäherung und Kombination von Enterprise Content Management und Analyseumgebungen.

Datenqualität statt Datenquantität

Angesichts der wachsenden Datenberge ist es trotz sinkender Hardwarepreise, Cloud und Konzepten wie dem Data Lake auf Dauer nicht wirtschaftlich, schlicht alle erreichbaren Daten zu speichern. Unternehmen müssen sich daher in den kommenden Monaten strategisch damit beschäftigen, auf welche Datensätze sie es besonders abgesehen haben bzw. welche ihnen Ansätze für bessere Analysen bieten können. Ebenso wird es um Wege zur Verbesserung der Datenqualität gehen, denn Datensätze können irrelevant, ungenau oder gar beschädigt sein. Qualität statt Quantität, heißt also die Parole für 2018.

Machine Learing hilft beim Datenschutz

Herzstück einer Big-Data-Analyse sind Verfahren der Künstlichen Intelligenz. Diese müssen in 2018 verstärkt für Auswertungen im Bereich der Datensicherung und Datensicherheit zum Einsatz kommen, da auf diesem Anwendungsgebiet laut Marktbeobachtern Nachholbedarf herrscht. So werden Maschinen beispielsweise schon bald in der Lage sein, mit Hilfe von Machine Learning menschliches Verhalten „vorherzusagen“ und automatisiert „unlabeled data“ zu verwenden. Dadurch wird sich Künstliche Intelligenz zu einem zentralen Instrument für Datenschutz und Abwehr unerlaubter Zugriff entwickeln.

Neue Rollen und viele Stellenangebote

Aber nicht nur die Vielfalt und Nutzungsformen von Big Data werden sich in der nächsten Zeit weiterentwickeln, sondern auch die Menschen, die damit arbeiten. So entstehen neben dem viel zitierten Data Scientist weitere Rollen in den Organisationen, welche die Erfassung, Auswertung und Operationalisierung von Big Data überhaupt erst strukturiert möglich machen. Auch die QUNIS hat hierzu bereits im Rahmen ihrer Big Data Methodik ein modernes Rollenmodell entwickelt, das detailliert die Aufgaben und Kombinationen diskutieren und definieren hilft. Zugleich wächst im Markt die Sorge, dass sich nicht ausreichend Spezialisten für diese oft sehr anspruchsvollen Aufgaben und Rollen rund um Big Data finden lassen. So schätz beispielsweise IBM, dass allein in den USA das Stellenangebot für Big-Data-Experten im weitesten Sinne von 364.000 offenen Stellen in 2018 auf 2,72 Millionen bis 2020 ansteigen wird.

Keine Industrie 4.0 ohne Big Data und Künstliche Intelligenz

Erstellt am: Mittwoch, 14. Februar 2018 von Sascha

Mit der zunehmenden Praxis wächst auch die Zahl der Umfragen zu Industrie 4.0. So hat sich jetzt die Siemens Financial Services bei Herstellern und Beratungshäuser aus dem Bereich der Produktion und Wartung in elf Ländern umgehört, wo der Schuh drückt. Heraus kamen sechs Themenfelder, die Hersteller nach eigenen Aussagen aktuell angehen müssen:

  • Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0
  • Zugang zu Finanzierungen, die den erforderlichen Investitionszeitraum berücksichtigen
  • Aufbau einer Kooperationskultur, die notwendig ist, um gemeinsam am Erfolg in einer vernetzten Industrie-4.0-Welt zu arbeiten, ob im eigenen Unternehmen, in der Lieferkette oder branchenübergreifend (mehr zur Unternehmenskultur und Industrie 4.0 finden Sie hier)
  • Überwindung von Risiken bezüglich der Daten- und Internetsicherheit in einer Welt, in der sich große Mengen sensibler Daten durch das Internet bewegen
  • Umfassender Zugang zu einer ausreichenden Zahl an realen Beispielen für erfolgreiche digitale Transformation aus allen Fertigungssektoren
  • Spezialisierte strategische Managementkompetenzen zur Erarbeitung eines klaren Stufenplans, um Industrie 4.0 zu erreichen. Spezialisierte strategische Führungsqualität zur Entwicklung eines klaren, gestaffelten Plans, um Industrie 4.0 umzusetzen.

Laut der Autoren zeigen diese Aspekte, dass es mittlerweile nicht mehr darum geht, grundsätzlich die Notwendigkeit zur Digitalisierung und Automatisierung zu diskutieren. Vielmehr stehen mittlerweile praktische Fragen im Mittelpunkt, wie Organisation den Weg zur Industrie 4.0 schrittweise und mit Augenmaß gehen können – einschließlich laufender Qualitätskontrollen und RoI-Maßnahmen.

Es fehlt an Expertise für digitale Produkte und Künstliche Intelligenz

Von allen Themenfeldern wurde die „Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0“ als größte Herausforderung benannt. Es fehlt bis dato digitales Produktionswissen, welches es operativen Mitarbeitern ermöglicht, Maschinen- und Leistungsdaten auf ihren portablen Dashboards zu interpretieren und entsprechende Maßnahmen zu ergreifen. Ferner müssen „digitaler Wartungskompetenzen“ entstehen, wie es die Studienautoren nennen, also, dass Techniker auch das Know-how haben, um komplexe digitalisierte Betriebssysteme und Geräte instandzuhalten. Und schließlich bedarf es der Expertise für operative und strategische Analysen. Gemeint ist damit, dass man die Auswertung großer Datenmengen, die sich durch die enge Vernetzung von Maschinen, Anwendungen und Menschen künftig rasant erhöhen (Big Data) in den Griff bekommt. Diese Unmengen an Daten – einschließlich Produktionsdaten, Lieferkettendaten, Marktdaten und finanziellen Daten – erfassen und analysieren zu können, ist entscheidend um die eigene Wettbewerbsfähigkeit künftig zu erhalten bzw. zu verbessern.

Datenmanagement auf Industrie 4.0 vorbereiten

Voraussetzung dafür ist, dass Unternehmen zunächst ihr bisheriges Datenmanagement und ihre Dateninfrastruktur bewerten, ob und wie sich diese für die Erfassung und Analyse von Big Data weiterentwickeln lassen – ohne bisherige Investitionen deshalb gleich aufgeben zu müssen. Ebenso gehört zu Vorarbeiten eine Strategiediskussion sowie Auswahl von Use Cases. Schauen Sie sich einmal unsere Methodik für Big-Data-Umgebungen sowie unser Data Lake Konzept an, die unsere langjährige Projekterfahrung und Expertise auch in den neuen Technologien und Verfahren wie die der Künstlichen Intelligenz widerspiegeln!

Big Data Anwendungsfälle PayPal und ProSiebenSat1

Erstellt am: Mittwoch, 24. Januar 2018 von Sascha

Auch wenn heute Big Data in aller Munde ist, so stehen doch die Unternehmen mehrheitlich immer noch am Anfang mit der Umsetzung. Gerade zu Beginn einer Big-Data-Initiative fällt es schwer, die geeigneten Use Cases zu finden beziehungsweise vorhandene Ideen weiter auszuarbeiten und für ein Proof-of-Concept zu priorisieren. Wir empfehlen daher, sich zunächst in einem individuellen Workshop über die eigenen Anforderungen,  den Markt und Technologien bis hin zur eine Road Map klar zu werden. Im Rahmen dieser Vorarbeiten erläutern wir unter anderem Anwendungsbeispiele aus der jeweiligen Branche oder Fachbereich, die von Kunden oder aus dem Markt stammen. Die QUNIS hat hierfür als Besonderheit im Markt eine „Lösungsbibliothek“ geschaffen. Sie vereint und strukturiert aktuell weit über 100 im Markt veröffentlichte Anwendungsbeispiele für die Nutzung von Big Data.

Ein besonders spannendes Anwendungsgebiet für Advanced Analytics ist beispielsweise das Marketing. Die in der Branche viel zitierte 360°-Sicht auf den Kunden bildet künftig die Grundlage dafür, welches Produkt und welche Dienstleistung er über welchen der vielen Kanäle zu welchen Konditionen angeboten bekommt. Je präziser daher eine Segmentierung von Kunden und die Prognose ihres Verhaltens möglich ist, desto höher sind Kontakt- und Antwortraten und damit auch Abschlussquoten und Umsatz, desto höher die Kundenzufriedenheit und Loyalität. Nachfolgend zwei Beispiele:

PayPal – Kunden besser verstehen und binden – Service optimieren durch Text Analytics

PayPal hat über 143 Millionen aktive Kunden und wickelt täglich über 8 Millionen Zahlungen ab. Zahlreiche Kunden äußern sich über Kundenumfragen, E-Mail, Feedback-Formulare im Web, Twitter zu den Dienstleistungen von PayPal, unter anderem darüber, welche technischen Probleme sie haben, was sie mögen, was sie stört und wie man den Service verbessern könnte. Wegen der enorm großen Menge an Feedback, wäre es sehr zeit- und kostenaufwändig, alles textuelle Feedback einzeln zu lesen und zu berücksichtigen. Die automatisierte Analyse des Kundenfeedbacks aus über 60 Ländern und in über 30 Sprachen ermöglicht es PayPal nun, wichtige Probleme und Themen sowie ihre Häufigkeit und Kritikalität automatisch und fast in Echtzeit zu erkennen, zu priorisieren und zu beheben.

ProSiebenSat.1 – Fakten mit Big Data: Was bringen TV-Spots für E-Commerce?

Die ProSiebenSat.1 Media AG vermarktet einerseits klassische TV-Werbezeiten und beteiligt sich andererseits an zahlreiche E-Commerce-Unternehmen. Im Rahmen der Beteiligung stellt ProSieben-Sat.1 u. a. Werbezeiten für die Bewerbung der E-Commerce-Angebote zur Verfügung. Es ist daher von hohem Interesse für ProSiebenSat.1, systematisch ermitteln zu können, welchen konkreten Beitrag die TV-Werbung zur Wertschöpfung des beworbenen E-Commerce-Unternehmens leistet. Wie viele Visitors besuchen genau deshalb die E-Commerce-Website, weil sie die TV-Werbung gesehen haben? Und welchen Umsatz bringen diese Visitors, die nachweislich ursächlich wegen der TV-Werbung auf die Website gekommen sind, in einem bestimmten Zeitraum? Durch den Big Data-Ansatz konnte ein Verfahren entwickelt werden, um den TV-Einfluss auf den Website-Traffic zu messen.

Mehr zu Big Data und der QUNIS-Methodik finden Sie hier

Self Service Business Intelligence will gelernt sein

Erstellt am: Donnerstag, 7. Dezember 2017 von Sascha

Es war um das Jahr 2010 als das Schlagwort Self Service im Markt für Business Intelligence die Runde machte. Das Thema wurde zunächst stark von Herstellern wie Microsoft, Tableau oder QlikView getrieben, während diese Anforderung in Anwenderunternehmen noch selten formuliert wurde. So mussten wir denn auch in der Beratung häufig zunächst ein Grundverständnis für Self Service BI (SSBI) schaffen, welche Vorzüge SSBI bieten könnte. Vielen Anwendern war gar nicht bewusst, wo SSBI anfängt und wo es endet. Seitdem hat es sich mehr und mehr etabliert und ist aus keinem Projekt mehr wegzudenken.

Selbst wenn es zu Beginn nicht explizit vom Kunden gefordert wird, zeigt sich bei der Ausarbeitung der Anforderungen, dass hier Bedarf besteht. Anwender, meist so genannte Power User, wollen sich ihre Daten immer häufiger selber erschließen und Analysen und Reports erstellen – eigenständig und unabhängig von der IT. Entsprechend wird erwartet, dass eine Business-Intelligence-Lösung und Technologie diese Nutzer bestmöglich unterstützt.

SSBI erfordert Erfahrung im Umgang mit Daten

Doch Self Service Business Intelligence ist kein Selbstläufer, sondern bedeutet für alle Betroffenen ein Umdenken. Man kann dem Anwender nicht ohne Anleitung einfach Werkzeuge an die Hand gegeben, damit er sich seine Daten selbst erschließt oder Reports erstellt. Es ist für ihn ungewohnt oder neu, sich jetzt mit den Tools sowie Fragen auseinandersetzen zu müssen, die Ihm sonst die IT abgenommen hat. Hilfe bei der Nutzung des BI-Frontends als auch die Datenintegration sind daher bei SSBI vonnöten.

Die gilt im noch stärkeren Maße bei der Datenexploration. Diese ist dann sinnvoll, wenn wenig über die Daten bekannt ist und die Explorationsziele nicht genau spezifiziert sind. Der Nutzer muss dann mit Hilfe von Methoden und Verfahren aus dem Gebiet der Advanced Analytics diese Daten selbstständig erforschen und Schlussfolgerungen ziehen können. Ebenso muss er im Explorationsprozess in der Lage sein, die Explorationsziele bei Bedarf verändern und anpassen zu können. Dies setzt viel Erfahrung mit Advanced Analytics voraus.

Ebenso mussten und müssen BI-Software-Hersteller lernen, wie sie SSBI in ihren Produkten am besten unterstützen. Manche Produkte konnten sich am Markt durchsetzen, andere verschwanden wieder. So konnte beispielsweise Microsoft in seinem BI-Stack anfangs nur wenige Tools für SSBI vorweisen: Excel, Power-Pivot, PerformancePointServices und die ReportingServices. Mit der Zeit gesellten sich zu diesen weitere Möglichkeiten hinzu durch MobileReports, PowerBI, PowerView, PowerQuery, AS-Tabular und DAX. PowerBI hat mittlerweile in seiner aktuellen Version sogar Künstliche Intelligenz integriert, um die Datenexploration zu vereinfachen (mehr zu PowerBI finden Sie hier).

IT muss Tools und Infrastruktur harmonisieren

Neben dem Anwender galt es auch für die IT umzudenken. Sie konnte nun nicht mehr einfach einen Cube entwickeln, dem nur mit Spezial-Wissen und als MDX-Experte die richtigen Zahlen zu entlocken waren. Nein, Cubes mussten auf einmal anwenderfreundlich sein! Dies setzte unter anderem voraus, dass man verstand, wie SSBI-Tools mit einem Cube umgehen, denn diese arbeiten eher per Drag-and-Drop mit Measures und Dimension auf den verschiedenen Achsen. Für selbstgeschriebene MDX-Abfragen war da kein Platz. Die IT muss daher Infrastruktur und Tools bestmöglich aufeinander abstimmen, soll SSBI in der Praxis funktioniere. In diesem Zusammenhang hört man gelegentlich auch von Self Service Data Integration (SSDI). Power-Pivot und AS-Tabular waren im Microsoft-BI-Stack die ersten Gehversuche, um den Anwendern die Integration von Daten aus verschiedenen Datenquellen zu einem Datenmodel zu ermöglichen. Dem Thema wird aber bislang noch zu wenig Aufmerksamkeit geschenkt, vielleicht auch weil die Tools dafür noch nicht die notwendige Flexibilität und Leichtigkeit bieten.

SSBI für den Power User

Selbst wenn alle genannten Voraussetzungen und Anpassungen gegeben sind, wird SSBI wohl auch künftig eine Domäne für Power User bleiben. Man muss schon ein gutes Verständnis über die eigenen Daten und Datenmodelle haben, um selbstständig arbeiten zu können. In den Projekten läuft es daher für gewöhnlich darauf hinaus, dass Power-User aus den Daten neue Erkenntnisse gewinnen und diese dann als Report den übrigen Endanwendern (Report-Konsumenten) zur Verfügung stellen.

Weitere Beiträge zu Entwicklungen in der Business Intelligence:

Die Unternehmensplanung verändert sich

Erstellt am: Freitag, 17. November 2017 von Sascha

Schon lange wird von Experten eine integrierte Planung gefordert, doch bleibt es in der Praxis häufig noch bei den alten Abläufen und Vorgehensweisen, die seit vielen Jahren eher kosmetisch angepasst werden. Es dominieren weiterhin Insellösungen, während schätzungsweise erst ein Drittel aller Unternehmen hierzulande schon moderne Planungslösungen im Einsatz hat. Dieser Nachholbedarf bremst auch die Einführung neuer Verfahren und Techniken wie Advanced Analytics. Zu viele Hausaufgaben sind im Zusammenhang mit der Planung noch zu erledigen. So etwa die Bereinigung und Harmonisierung von Datenmodellen. Auch scheuen Unternehmen die Kosten für den Umbau in Richtung integrierte Planung, da es sich um keine kurzfristigen und billigen Vorhaben handelt.

Planungsumgebungen, Simulationen und Predictive Analytics

Dennoch ist die Entwicklung nicht stehengeblieben. Vielmehr zeigen sich deutlich drei Entwicklungen bei der Modernisierung der Planungsumgebung. So existieren in manchen Unternehmen mittlerweile große Planungsplattformen mit neuen Tools und leistungsstarken Datenbanken, über die verschiedene Planungsprozesse integriert und automatisiert werden. Ferner werden häufiger Szenarien modelliert und simuliert. Dadurch wird das bisher dominierende Einsammeln von Plandaten (Bottom up) zurückgedrängt zugunsten einer Top-down-Planung.
Und schließlich kommen auch Lösungen für Advanced Analytics mittlerweile zum Einsatz. Mit ihnen lassen sich laut Finanzexperten schon heute besonders für kurzfristige Prognosen (Predictive Analytics) und für operative Größen gute Ergebnisse erzielen. Aggregierte Größen wie zum Beispiel der EBIT ließen sich hingegen bislang noch nicht so gut berechnen. Doch dies sei nur eine Frage der Zeit. Auch die wachsenden Datenmengen seien in diesem Zusammenhang weniger das Problem, sondern vielmehr die Verfügbarkeit und Qualität der Daten. Aktuell haben 20 Prozent aller Unternehmen eine Planungsumgebung mit automatisierten Analysen, so eine Schätzung.

Weitere Beiträge zum Thema Planung:

Die Digitalisierung wird oft der IT überlassen

Erstellt am: Dienstag, 7. November 2017 von Sascha

Nur in 42 Prozent aller Unternehmen werden Digitalisierungsprojekte und digitale Innovationen aktuell vom Vorstand oder der Geschäftsleitung angestoßen. Stattdessen kommen die Initiativen in 86 Prozent der Unternehmen aus der IT-Abteilung. Dies ergab jetzt eine Umfrage von Bitkom Research im Auftrag von Tata Consultancy Services (TCS) unter 905 Unternehmen mit 100 oder mehr Mitarbeitern in Deutschland. Konkret seien die Interviews mit Führungskräften geführt worden, die in ihrem Unternehmen für das Thema Digitalisierung verantwortlich sind. In einer vergleichbaren Umfrage aus dem Vorjahr hatten noch 51 Prozent der Befragten das Management als Treiber der Digitalisierung gesehen und 78 Prozent die IT.

Grundsätzlich seien laut einer Pressemeldung jeweils rund drei Viertel der Befragten interessiert und aufgeschlossen gegenüber Cloud Computing (77 Prozent) und Big Data Analytics (72 Prozent), jeder Zweite gegenüber dem Internet der Dinge (46 Prozent). Rund jedes dritte Unternehmen interessiert sich für Technologien wie Virtual und Augmented Reality (37 Prozent), 3D-Druck (36 Prozent), Künstliche Intelligenz (35 Prozent) oder Robotik (29 Prozent).

Bedarf an Skills für Digitalisierung

Mit dem Wandel sehen die befragten Unternehmen auch einen steigenden Bedarf an zusätzlich und neuen Mitarbeitern bzw. an Beratungsdienstleistungen. So planen fünf Prozent der Unternehmen Stellen für Data Scientists und Application Developer, externe Dienstleister wollen dazu vier bzw. neun Prozent nutzen. Die größte Nachfrage besteht allerdings nach IT-Sicherheitsexperten. Eine solche Stelle im Unternehmen wollen 15 Prozent besetzen, 20 Prozent wollen das entsprechende Know-how extern beziehen.

Mehr zum Thema Digitalisierung finden Sie hier:

Business Intelligence und Data Warehousing in der Cloud auf dem Vormarsch

Erstellt am: Donnerstag, 14. September 2017 von Sascha

Ob Analyse und Reporting oder Data Warehousing: die Nutzung von Cloud-Dienste in der Verwaltung und Auswertung von Unternehmensdaten etabliert sich. Dies können wir auch aus den QUNIS-Kundenprojekten berichten, in denen immer öfter neue Anwendungen für Big Data und Advanced Analytics oder klassisches Data Warehousing in der Cloud (Microsoft Azure) entstehen.
Ein Stimmungsbild zur Cloud-Nutzung gab kürzlich auch die Online-Umfrage „BI and Data Management in the Cloud: Issues and Trends“ vom BARC und der Eckerson Group. Danach gaben 43 Prozent der 370 Unternehmensvertreter an, bereits heute zumindest Teile ihrer Business-Intelligence- oder Daten-Management-Vorhaben mit Hilfe von Cloud-Diensten umzusetzen. Die größte Gruppe unter den Teilnehmer der Umfrage stammten nach Region aus Europa (47 Prozent) und Nordamerika (37 Prozent).

Business Intelligence Tools am häufigsten in der Cloud

Von den rund 160 Cloud-Nutzern erklärte über die Hälfte, sie würde Business-Intelligence-Werkzeuge (62 Prozent) und -Server (51 Prozent) nutzen. Stark zugenommen hat in den letzten drei Jahren auch der Einsatz von Tools für die Datenexploration (49 Prozent). Die Gründe hierfür lägen laut der Autoren in der allgemein zunehmenden Verbreitung solcher Werkzeuge sowie dem großen Interesse insbesondere unter den „Power Usern“ an solchen visuellen Tools. Power User seien aktuell die stärkste Nutzergruppe von Cloud-Lösungen. Werkzeuge für Advanced Analytics werden in jedem vierten Unternehmen in der Cloud betrieben. Auf dem Gebiet des Datenmanagements in der Cloud dominieren Data-Warehouse-Systeme (42 Prozent) vor Datenintegrationswerkzeugen (35 Prozent).

Public Cloud bevorzugt

Beim Betrieb von Cloud-Lösungen setzen Unternehmen laut Umfrage vor allem auf die „Public Cloud“, während interne Systeme („Private Cloud“) oder hybride Ansätze weniger oft genannt wurden. Public Clouds (wie der Microsoft Azure Stack) sind einfach und vergleichsweise kostengünstig nutzbar, während im Vergleich dazu intern aufgebaute Lösungen von hohen Infrastrukturinvestitionen begleitet sind. Hybride Ansätze, so die Autoren, wären zudem schwieriger zu verwalten und würden Sicherheitsbedenken auslösen, weil sich beispielsweise ein BI-Anwendung in der Cloud durch die Unternehmens-Firewall mit der internen Lösung verbinden (Tunneling) muss.

Einen praxisorientierten Einblick in die derzeitige Cloud-Nutzung für Business Intelligence und Datenmanagement gibt Ihnen unser Blog-Beitrag Business Intelligence – No Cloud, Hybrid oder All Cloud?

 

Megatrend Digitalisierung

Erstellt am: Freitag, 1. September 2017 von Sascha

Großer Bahnhof auf dem diesjährigen Kundentag „QUNIS Day“ in Neubeuern. Mit neuem Besucherrekord und aufgeräumter Stimmung ging es am Morgen in die Konferenz, in deren Mittelpunkt Best Practices für Business Intelligence, Big Data und Advanced Analytics sowie der fachliche Austausch stehen. Unter dem Motto „Innovation Now“ erläutern Senior Analysten sowie unsere Kunden Henkel und Südpack  wie sich die allgegenwärtige digitale Transformation der Unternehmen aktuell darstellt.

QUNIS Day 2017

Großes Anwendertreffen zu Business Intelligence, Big Data und Advanced Analytics auf dem QUNIS Day 2017. Quelle: QUNIS

Geschäftsführer Hermann Hebben konnte zum Auftakt das erfolgreichste Geschäftsjahr seit Firmengründung 2013 verkünden. Mittlerweile werden über 150 Unternehmen im Mittelstand und Konzern betreut und auch die Belegschaft sei in den letzten zwölf Monaten um 73% gewachsen. Auch wirtschaftlich stehe das Beratungshaus sehr gut dar. Hebben betonte aber, dass man weiterhin auf die Kernkompetenz setzen werde, statt neue Beratungsfelder um jeden Preis anzugehen: „G´scheid oder gar ned!“.

Data Warehouse schneller und performant aufbauen

In den letzten zwölf Monaten wurden viele erfolgreiche Projekte umgesetzt. Die Strategieberatung bleibt dabei von zentraler Bedeutung, um ein Fundament für erfolgreiche Initiativen zu legen. Mit Blick auf die Umsetzung von Anforderungen hat QUNIS sein im Markt einmaliges „Data Warehouse Framework“ weiterentwickelt und in vielen Data-Warehouse-Projekten eingesetzt. Ferner wird auf dem QUNIS Day mit der „QUNIS Automation Engine“ erstmals im Plenum eine neue Methode und Technik vorgestellt, mit der sich die Beladung eines Data-Warehouse-„Core“ automatisieren lässt. Gut entwickle sich laut Hebben auch die Schwesterfirma GAPTEQ, die sich nach ihrem Start im September 2016 mittlerweile gut im Markt etabliert hat.

Digitalisierung verändert das Datenmanagement und Datenanalyse

All diese Entwicklungen erfolgen wie erwähnt in einem Marktumfeld, das sich für Unternehmen durch die Digitalisierung aktuell radikal verändert. Beispielhaft stellte Geschäftsführer Steffen Vierkorn vier Megatrends vor, die mit der Digitalisierung verknüpfte sind: Globalisierung, Mobilität, Konnektivität und Individualisierung. Die Technologie werde immer mehr zum Treiber von Veränderungen. Besonders sei dies bei der Nutzung von Cloud-Diensten und Komponenten wie „Microsoft Azure“ zu beobachten sowie bei der Vernetzung von Geräten (Internet of Things). Jenseits der Vorstellungskraft lägen mittlerweile die entstehenden Datenmengen. Bis 2025 sei mit 163 Zetabyte zu rechnen, so Vierkorn, die auf etwa 40 Billionen DVDs Platz hätten!

Veränderungen seien auch mit Hinblick auf die Datennutzung und -analyse bei der Produktentwicklung und Geschäftsbeziehungen zu beobachten. Die Rolle von Business Intelligence. Big Data und Advanced Analytics nehme in diesem Szenario weiter zu. Viele Unternehmen versuchten aktuell die Analytik in den Griff zu bekommen. In diesem Zusammenhang stellte Vierkorn das Data-Lake-Konzept der QUNIS vor.

Künstliche Intelligenz QUNIS Day

Ein Beispiel für die Nutzung Künstlicher Intelligenz war auf dem QUNIS Day am Beispiel eines Fahrzeugs zu sehen, das neben Gesichtserkennung auch Objekten beim Fahren ausweichen kann. Quelle: QUNIS

Die dazugehörige Architektur, die traditionelle Data-Warehouse-Welt und die Nutzung von Big Data methodisch und technologisch verknüpfen hilft, wurde auf der Veranstaltung ausführlich vorgestellt. Die Auswirkungen seien auch organisatorisch groß. So würde es künftig mehr und neue Rollen im Team geben müssen, um die unterschiedlichen Anforderungen abdecken zu können.

QUNIS Day 2017

QUNIS Day 2017 Steffen Vierkorn und Patrick Eisner vom QUNIS-Management.

Kostenlose Testdaten für Big-Data-Analysen

Erstellt am: Donnerstag, 1. Juni 2017 von Sascha
Der Verwendung von Testdaten für Big-Data-Analysen stehen häufig der Datenschutz und strategische Bedenken entgegen. Auch sind Daten unterschiedlicher Provenienz und Struktur nicht immer verfügbar oder müssen eventuell aufwändig bereitgestellt werden. Ebenso können beispielsweise Marktzahlen die eigene Analysebasis sinnvoll erweitern.
Umso erfreulicher ist es für Teams, die sich mit Big Data und Advanced Analytics vertraut machen wollen, dass es heute viele, meist öffentlich zugängliche Datenquellen im Internet gibt. Dabei handelt es sich beispielsweise um Daten öffentlicher Einrichtungen. Hier haben die Bemühungen um „Open Data“ Vieles in Bewegung gesetzt. Ebenso stellen Unternehmen zunehmend Daten über REST-Schnittstellen kostenfrei zur Verfügung, in der Hoffnung, dass sich aus der Nutzung Folgegeschäfte ergeben können. Die Testdaten können dabei durchaus ein erhebliches Volumen von bis zu mehreren Hundert Terabytes haben. Nachfolgend stellen wir Ihnen einige dieser Quellen kurz vor:

 

QUNIS

QUNIS arbeitet bei Big-Data-und Advanced-Analytics-Vorhaben mit Testdaten, um Aufgabenstellungen zu veranschaulichen. So verwenden wir Datasets von Kaggle, einer Online-Plattform, die rund 260 Datensätze anbietet. Zudem haben wir ergänzend mit unserer Lösungsbibliothek zahlreiche Big-Data-Anwendungsbeispiele aus allen Branchen vereint, die Ihnen bei der Auswahl und Priorisierung von Use Cases gute Dienste leisten.

 

Bund
Die Geschäfts- und Koordinierungsstelle GovData arbeitet seit Herbst 2015 an dem EU-konformen Metadatenstandard für offene Verwaltungsdaten in Deutschland „DCAT-AP.DE“. Über das Datenportal stellen teilnehmende öffentliche Stellen Informationen zu vorhandenen Datensätze aus verschiedenen Bereichen (z.B. Umwelt, Bildung, Statistik) zur Verfügung. Es ist eine Vielzahl an unterschiedlichen Daten vorhanden. So finden Sie über GovData neben Statistiken und Jahresberichten, beispielsweise auch Karten, Wahlergebnisse oder Datenbanken, die es Ihnen ermöglichen, über Suchkriterien passende Einrichtungen zu finden.
https://www.govdata.de/

 

US-Regierung
Hier findet sich Open Data zu Themen wie “Landwirtschaft”, “Finanzen”, “Wirtschaft”. Insgesamt über 180tausend Datensätze.
https://www.data.gov/

 

Eurostat
Das Statistische Amt der Europäischen Union, kurz Eurostat genannt, bietet ein umfängliches Open-Data-Repository. Hier finden sich beispielsweise Daten zu Themen zur Bevölkerung, Unternehmensdaten, Wirtschaftsdaten, Landwirtschaft oder dem Gesundheitswesen.
http://ec.europa.eu/eurostat/data/database

 

Amazon Datasets
Amazon bietet mit den „AWS Public Data Sets“ eine Vielzahl von Daten, die der Konzern in seiner S3-Cloud-Plattform vorhält. Die Daten sind frei, es fallen aber Prozessgebühren an, wenn Rechner zur Analyse die AWS-Plattform verwenden. Zu den angebotenen Daten gehören untern anderem die täglich aktualisierten NASA-Daten, Klimadaten, Musikdaten („The Millionen Song Collection“), Social-Media-Daten, Daten aus der Wikipedia oder vom „Human Genome Project“.
http://aws.amazon.com/datasets/

 

CERN
Das CERN, die Europäische Organisation für Kernforschung, stellt aus seinen Projekten ebenfalls Daten zur Verfügung. So etwa Proben aus der Arbeit mit dem “Large Hadron Collider”. Unter diesen insgesamt über 300 Terabyte sind nicht nur Rohdaten, sondern auch aufbereitete Daten, die sich etwa in Universitäten nutzen lassen.
http://opendata.cern.ch/?ln=de

 

Weltbank
Die Finanzorganisation bietet eine Fülle an Daten über die weltweite Entwicklung und Wirtschaft. Statt eines Downloads lässt sich auch über einfach zu bedienende Benutzeroberflächen auf die Daten zugreifen.
http://data.worldbank.org/

 

OECD
Die Organisation für wirtschaftliche Zusammenarbeit und Entwicklung (OECD) stellt ein Vielzahl statistischer Daten zu allen 30 OECD-Ländern, der EURO-Zone und der Gesamtorganisation zur Verfügung. Die Daten sind nach Themengruppen organisiert, wie beispielsweise Internationaler Handel, Preise, Public Management oder zum Arbeitsmarkt.
http://www.oecd.org/statistics/

 

Ein Verzeichnis weitere Datenquellen bietet beispielsweise die Website Quora.

Praktische Informationen zu Big Data und Advanced Analytics für Ihre Projekte sowie Analysen und Neuigkeiten aus dem Markt bietet Ihnen auch unser Seite Big Data Factory!

Data Science mit der Microsoft Azure Cortana Intelligence Suite

Erstellt am: Donnerstag, 1. Juni 2017 von Sascha
Kaum eine Business-Nachricht heutzutage ohne die Schlagworte Künstliche Intelligenz, Big Data, Advanced Analytics, Machine Learning. Es heißt, die Geschäftswelt wird sich schon bald komplett ändern – und tatsächlich hat die Zukunft bereits begonnen. Erst kürzlich verkündete Microsoft der Welt seine Vision und sein Credo, künstliche Intelligenz zu demokratisieren, damit jeder von ihr nicht nur profitieren kann, sondern auch soll. Spätestens jetzt sollte man sich als Unternehmer oder als Teil eines Unternehmens Gedanken machen, wie er an dieser gleichermaßen faszinierenden wie auch ein wenig erschreckenden neuen Welt nicht nur teilhaben kann, sondern auch wird.

 

Aber wie? Eine nähere Betrachtung des Themas zeigt schnell, dass es vor allem auf Use Cases ankommt, die sich ein Unternehmen überlegen und die es definieren muss. Ebenso muss das Ziel einer Big Data-Initiative klar sein, und damit auch, was man durch entsprechende Anwendungen prognostizieren und damit erreichen will. Daran anschließend drängen sich weitere Fragen auf: Wie kann ich mein Big Data- oder Advanced Analytics-Vorhaben in die Tat umsetzen? Welche Voraussetzungen müssen gegeben sein? Wie groß sind die Hürden für eine Umsetzung? Statt nur zu vermuten, was die Kunden über meine Produkte denken, will ich es wissen! Ich will präzise Voraussagen treffen können, ob und wann meine Kunden Interesse entwickeln oder wann ich Gefahr laufe, sie zu verlieren. Dies gelingt umso besser, je mehr möglicherweise kundenrelevante Informationen einbezogen werden können, beispielsweise aus den sozialen Medien oder aus Nachrichten-Feeds. Diese wertvollen Informationen will ich sodann mit meinen vorliegenden Geschäftsergebnissen „verheiraten“, um auf dieser Datenbasis fundierte und zuverlässige Geschäftsentscheidungen treffen zu können. 

 

Erfahrung mit der Microsoft Azure Cortana Intelligence Suite

Kann diesbezüglich Microsoft sein Versprechen halten? Sind die Komponenten der Microsoft Azure „Cortana Intelligence Suite“ wirklich geeignet, um Big Data-Vorhaben umzusetzen? Zunächst einmal ist das Angebot des Herstellers Cloud-basierend und komplett für den Nutzer administriert, d.h. man benötigt keine eigene Hardware oder Mitarbeiter, sondern nutzt vollständig verwaltete Dienste. Ferner lassen sich mit Hilfe der neuen „Azure Logik Apps“ auch die genannten sozialen Medien problemlos anzapfen, und das ganz ohne zusätzlichen Programmieraufwand. Einfach ist in der Praxis auch die Analyse des daraus entstandenen Datenstroms, etwa um Trends zu erkennen. So kann man beispielsweise für eine Stimmungsanalyse das „Text Analytics API“ –  ein Baustein der sogenannten Cognitive Services – verwenden, mit dessen Hilfe sich auch Schlüsselbegriffe aus dem Text ermitteln lassen. Und dies ist nur eine Option von vielen auf Machine Learning basierenden Bausteinen aus dem Microsoft-Angebot.

Werkzeuge für den Data Scientist

Für die Arbeit als Data Scientist findet sich das „Azure Machine Learning Studio“, eine sehr komfortable und benutzerfreundliche Anwendung, die sämtliche Schritte des Data-Science-Prozess per Drag & drop komponieren hilft. Neben vielen Methoden zur Unterstützung der Datenvorbereitung, bietet Azure ML Out of the box auch alle gängigen Machine-Learning-Modelle aus den Gebieten „Supervised“ sowie „Unsupervised Learning“ – von einfachen Classification-Modellen über Neuronale Netzwerke bis hin zum K-Means Clustering. Bereits vorhandene, in R oder Python entwickelten Scripts oder präferierten Modelle kann der Data Scientist ebenfalls einfach integrieren.
Flexibilität bietet Microsoft auch bei der Speicherung des Datenstroms plus Analyseergebnisse. Eine Option ist die Ablage in einem schier unbegrenzten Data-Lake-Speicher, auf dem der Anwender mit Hilfe der „Data Lake Analytics“ und U-SQL weitere Analysen vornehmen kann. Gleichfalls möglich ist eine Speicherung strukturierter Daten in einer Azure SQL-Datenbank oder einem Datawarehouse oder es lassen sich Daten auch direkt für den Endanwender interaktiv visualisiert per „Power BI“ bereitstellen.

Der Weg in die schöne neue Welt ist also keineswegs erschreckend schwierig, sondern mit einem Schritt ist man schon heute mitten drin! Dabei stellen die genannten Möglichkeiten nur ein Bruchteil dessen dar, was mit der „Azure Cortana Intelligence Suite“ bereits heute möglich ist. Für perfekt passende Szenarien sind der Fantasie dabei keine Grenzen gesetzt. Die Experten von QUNIS stehen Ihnen dabei mit Rat und Tat zur Seite! Sei es durch ein kostenfreies Advanced-Analytics-Webinar oder im Rahmen eines Big-Data-Workshops. Wir können Ihnen in jedem Fall dabei helfen, unternehmensspezifische Business Cases zu identifizieren, ein passendes Szenario mit Ihnen abzustimmen und dieses nachfolgend im Rahmen eines Proof of Concept auch gleich zu verproben.

Weitere Beiträge zur Nutzung von Big Data und Advanced Analytics finden Sie auf unserem Blog der Bigdata Factory!