Archiv für die Kategorie Advanced Analytics

Melitta Single Portions: Entwicklung und Betrieb des Data Warehouse aus einer Hand

Erstellt am: Montag, 17. Juni 2024 von Anja Gorbach

QUNIS hat bei Melitta Single Portions ein Data Warehouse implementiert und betreut seitdem den Betrieb und die Weiterentwicklung der Cloud-Lösung. Mit „QUNIS Care & Run“ erhält das junge Unternehmen professionellen Rundum-Service und kann sich verstärkt auf den Ausbau seines innovativen Geschäftsmodells konzentrieren.

QUNIS ist Teil unseres Teams. Der Elan und die Motivation im Team machen die Zusammenarbeit so besonders und bringen uns täglich voran.

Angela Musić-Siedler,
BI-Leiterin, Melitta Single Portions

Data Warehouse für innovatives Start-up

Seit 2019 hat sich Melitta Single Portions mit seiner Marke Avoury® am Markt für einzelportionierten Tee positioniert. Parallel hat das Unternehmen seine IT-Landschaft komplett neu „auf der grünen Wiese“ aufgesetzt, inklusive Data Warehouse als Grundlage für das Reporting und die Unternehmenssteuerung.

Die BI-Leiterin Angela Musić-Siedler, die das Thema anfangs allein bearbeitete, holte sich im Jahr 2019 QUNIS als erfahrenen Beratungs- und Implementierungspartner zur Seite. Die Zusammenarbeit startete mit einem Workshop zur Konzeption des Data Warehouse. Auch die Produktauswahl hat QUNIS begleitet. Als Technologien sind Microsoft Azure SQL und das Frontend Pyramid Analytics im Einsatz.

Mit der Cloud-Lösung kann das Start-up-Unternehmen die Kosten sicher planen und die benötigten IT-Ressourcen entsprechend dem Firmenwachstum schnell ausbauen. Das Frontend wurde drei Jahre nach der Inbetriebnahme erneut evaluiert und weiterhin als die passende Lösung bestätigt.

Die Implementierung fand auf Basis des QUNIS Data Warehouse Framework (QDF) statt, das die effiziente Umsetzung einer standardisierten und hoch automatisierten IT-Architektur gewährleistet. QUNIS hat verschiedene Datenquellen wie SAP, Salesforce oder Google Analytics zu einer zentralen Datenbasis für das Reporting zusammengeführt. Inzwischen sind rund zehn Vorsysteme integriert.

Standardreports für jeden Fachbereich

Hinsichtlich des Standardreportings lautete das Ziel, dass von Anfang an jeder Fachbereich einen Bericht mit seinen wichtigsten Kennzahlen erhalten sollte.

Eine wesentliche Herausforderung bestand dabei im neuen Geschäftsmodell des Startups: Da zum Zeitpunkt der Implementierung die Produkte noch nicht auf dem Markt waren, lagen noch keine konkreten Verkaufszahlen für die Belegung der Datenmodelle und Berichte vor. Avoury® arbeitet über den eigenen Shop mit dem DTC (Direct to Consumer)-Ansatz. Das Kundenverhalten und die Kundenzufriedenheit sind dabei ein zentrales Thema der BI-Analysen.

Inzwischen gibt es 45 Berichte für alle Fachbereiche. Die Schwerpunkte liegen derzeit auf dem Ist-Reporting von Sales- und Finanzkennzahlen; die Planung soll in einem späteren Ausbauschritt dazukommen. Einen Überblick über die wichtigsten Steuerungskennzahlen ruft die Geschäftsführung täglich auf ihrem Smartphone ab.

Steuerungsinformationen aus der Teemaschine

Wertvolle Steuerungsinformationen liefern zudem die verkauften Avoury® Teemaschinen. Nach Zustimmung durch den Kunden kann Melitta Single Portions den Lebenszyklus, Updates oder Wartungsdaten der smarten Maschinen online auslesen. Im Servicefall hat so der Melitta-Support Zugriff auf die Daten und kann den Endkunden gezielt unterstützen. Auch Nutzungsinformationen wie die verwendeten Teesorten erkennt die Maschine.

Durch die Auswertung der Maschinendaten erhält Melitta Single Portions Einblick in das Kundenverhalten, zu dem es bislang wenig Erfahrungs- und Vergleichswerte gab. Auch die Klassifizierung und Analyse von Retouren liefern Hinweise für das Qualitätsmanagement und die Erhöhung der Kundenzufriedenheit. 

Durch die BI-Lösung kennen wir unsere Kunden, können gut informierte Entscheidungen treffen und unser Unternehmen gezielt steuern.

Strukturierte Weiterentwicklung

Für die Weiterentwicklung des Berichtswesens hat das Team ein strukturiertes Anforderungsmanagement etabliert.

  • Die Aufnahme und Spezifikation der Anforderungen aus den Fachbereichen übernimmt Melitta Single Portions intern.
  • QUNIS sorgt dann für die Umsetzung im Backend: den Datenload aus den Vorsystemen, den Aufbau von Business-Logiken und den standardisierten Ausbau des Datenmodells.
  • Die gemeinsame Entwicklungsarbeit erfolgt in einem agilen Ansatz mit definierten Sprints. Zur Planung der Sprints samt Personaleinsatz nutzt das Team Azure DevOps.

Sicherheit durch QUNIS Care & Run

Außer der Entwicklung unterstützt QUNIS auch den Systembetrieb. Im Rahmen der Care & Run Services kümmert sich das Support- und Wartungsteam von QUNIS um die Produktiv- und Testumgebung des Data Warehouse in der Azure Cloud.

So prüfen die IT-Experten täglich, ob der nächtliche Datenload zum Data Warehouse störungsfrei abgelaufen ist. Gründe für einen abgebrochenen Ladelauf können u .a. Wartungsarbeiten an einem der Vorsysteme innerhalb der Melitta Group oder die Passwortänderung einer Datenquelle sein, die dann für die BI-Anwendung nachgezogen wird.

Durch Fehler-Alerts, ein strukturiertes Ticketsystem und die Bearbeitung auf Basis definierter SLAs gewährleistet QUNIS den durchgängig sicheren und stabilen Systembetrieb.

In monatlichen Meetings bespricht das BI-Team mit den Experten von QUNIS Themen wie inhaltliche Auffälligkeiten, Möglichkeiten zur weiteren Automatisierung oder effiziente Kommunikationsregeln, um den Systembetrieb kontinuierlich weiter zu optimieren. Einige Erkenntnisse aus dieser Zusammenarbeit sind bereits in die Weiterentwicklung der QUNIS Care & Run Services eingegangen.

Hohe Planungssicherheit

Die Zusammenarbeit mit QUNIS ermöglicht Melitta Single Portions auch mit weniger Personalressourcen den Betrieb und Ausbau einer professionellen und hochmodernen Berichtsumgebung. In Kombination mit der Cloud-Infrastruktur sind die Personal- und IT-Ressourcen gezielt skalierbar.

Das BI-Team kann flexibel auf Anforderungen aus dem Unternehmen reagieren und sich dabei jederzeit auf eine stabile IT-Umgebung verlassen. Bei Fragen stehen fachlich und technisch versierte Ansprechpartner von QUNIS zur Verfügung, die die gemeinsam entwickelte Systemlösung selbst gut kennen.

Wir schätzen die Kompetenz und Zuverlässigkeit
der QUNIS Experten und die Zusammenarbeit macht einfach Spaß.


Mehr zu Melitta Single Portions
: Melitta Single Portions ist innerhalb der Melitta Group für Produkte rund um die Heißgetränkezubereitung in Form der Einzelportionierung zuständig. Mit innovativen Lösungen und Produkten ist es das Ziel, einer der führenden, global agierenden Anbieter für einzelportionierte Heißgetränke zu werden. Seit November 2019 wird mit Avoury®, der ersten Marke von Melitta Single Portions, einzelportionierter Tee im Premium-Sortiment produziert und vertrieben. Mit der Avoury® One Teemaschine und über 30 Premium-Teesorten sorgt Avoury® für einen neuen, nachhaltigen und hochwertigen Teegenuss. www.melitta-group.com

Mehr zur QUNIS Implementierung

SENEC: Implementierung einer Data & Analytics-Plattform im Bereich Erneuerbare Energien

Erstellt am: Dienstag, 18. Juli 2023 von Anja Gorbach

SENEC gehört zu den führenden Solarstromspeicheranbietern in Deutschland. Zusammen mit QUNIS hat das Unternehmen mit vielfältigen Technologien ein Data Lakehouse aufgesetzt, das dem schnellen Firmenwachstum gerecht wird und BI- und IoT-Analysen in einer zentralen Datenplattform unterstützt.

Wegen des starken Wachstums haben wir uns entschlossen, einen Modern Data Stack auf Basis von Microsoft Azure einzuführen, um mit den steigenden Reporting- und Analyseanforderungen Schritt zu halten.

Armin Geisler,
Team Lead Data and Analytics, SENEC GmbH

Eine Plattform für alle Datenprodukte

SENEC entwickelt und produziert intelligente Speicherlösungen für die Nutzung von Sonnenenergie. Mit SENEC.360 bietet das Unternehmen Privathaushalten passgenaue Lösungen für die Eigenversorgung mit Solarstrom, von der PV-Anlage über den smarten Stromspeicher bis hin zur E-Ladestation. Das dynamische Unternehmen trifft mit seinem Angebot den Nerv der Zeit und verzeichnet ein exponentielles Wachstum.

Das vorhandene BI-System konnte der schnellen Unternehmensentwicklung nicht mehr folgen und auch der steigende Bedarf an Big-Data-Applikationen war mit individuell programmierten Lösungen nicht mehr zu bewältigen. Die Auswertung von Streaming-Daten aus IoT-Produkten, Feldtestanalysen auf Basis von Batteriedaten oder ML-Anwendungen wie Predictive Maintenance gehören zur wachsenden Zahl an Use Cases bei SENEC, die eine neue IT-Umgebung für Data & Analytics erforderten.

Ziel der neuen Datenplattform war, dass sie sowohl die klassischen Geschäftsanalysen im Finanz- und Fachbereichscontrolling als auch die Big-Data-Analysen unterstützt – mit der Möglichkeit der kombinierten Auswertung aller Datenformate in Dashboards für Geschäftsanalysen und die Unternehmenssteuerung. Die Plattform sollte als Modern Data Stack mit verschiedenen Tools und Technologien aufgesetzt werden und als Single Point of Truth für sämtliche Datenprodukte fungieren.

Mindset-Pitch für eine gute Zusammenarbeit

Im Rahmen einer Ausschreibung und auf Empfehlung aus dem Netzwerk des Teams kam QUNIS als Realisierungspartner ins Spiel. Katja Both, Head of Business Intelligence & Processes bei SENEC, integrierte mit einem Mindset-Check den ausschlaggebenden Bewertungsansatz der Pitches. Hintergrund ist die Überzeugung, dass die gute Zusammenarbeit mit dem Dienstleister – insbesondere auf operativer Ebene – entscheidend für den Projekterfolg ist.

Katja Both erläutert: „Uns war wichtig herauszufinden, ob unsere Engineers und Analysten gut mit denen des Dienstleisters zusammenarbeiten können. Am Ende haben unsere Mitarbeiter:innen entschieden, wer unser Projektpartner wird. Damit hatten wir von Beginn an ein ausgeprägtes Committment aller Beteiligten, entscheidend für die benötigte Geschwindigkeit in diesem schnellwachsenden Hypergrowth Umfeld.“

QUNIS bringt die richtige Mischung aus strategischem Vorgehen und Pragmatismus mit und passt auch mit seinem Mindset gut zu unserem Team.

Katja Both,
Head of Business Intelligence & Processes, SENEC GmbH

Agile Entwicklung am Testsystem

Einmal beschlossen, ging die Konzeption und Implementierung der komplexen Plattform zügig voran. Die Strategie für die neue IT-Architektur, die Systemkonzeption und Themen wie Data Governance und Security haben QUNIS und SENEC ab Mitte 2022 innerhalb von zwei Monaten definiert. Im Herbst 2022 startete die Implementierung der IT-Architektur. Im März 2023 war die Datenplattform betriebsbereit.

Schon während der Strategieentwicklung hat QUNIS eine temporäre Testinfrastruktur als vereinfachte Version des Zielsystems installiert, was zur schnellen Realisierung beitrug: Das Team konnte die Plattform auf diese Weise im agilen Prototyping auf und ausbauen und parallel bereits erste Anforderungen der Fachbereiche und der Geschäftsleitung umsetzen.

Data Lakehouse als Modern Data Stack

Als Modern Data Stack besteht die Cloud-basierte Plattform aus einer Vielzahl von Technologien und Tools für die Erfassung, Speicherung, Verarbeitung und Analyse von Daten.

  • Die IT-Architektur ist ein Data Lakehouse auf Basis von Azure Databricks, das Elemente eines Data Warehouse mit einem Data Lake in der zentralen Plattform kombiniert. Die mit einer Staging und Cleansing Area, dem Core und einem Data Mart angelegte Lakehouse-Architektur ist in der Lage, Funktionen von Streaming Analytics, BI und maschinellem Lernen auf einer einzigen Plattform bereitzustellen.
  • Als Datenquellen sind u. a. eine Time Series Datenbank, eine Log-Datenbank, diverse relationale Datenbanken, SharePoint und klassische Business Systeme wie ERP, CRM usw. eingebunden. Zur Integration und Orchestrierung der Daten sind die Open-Source-Lösungen Airbyte und Airflow auf Kubernetes im Einsatz, zur Transformation von Daten im Lakehouse die Open-Source-Software dbt. Mit der kontinuierlichen Umsetzung neuer Use Cases werden schrittweise weitere Datenquellen angebunden. Die Anwender greifen über Microsoft Power BI auf die aufbereiteten Daten zu.
  • Power BI ist als strategisches Frontend für alle User im Einsatz. Das vielseitige Frontend unterstützt und visualisiert verschiedenste Use Cases in den Bereichen Unternehmens- und Marktinformationen sowie Produkt- und Qualitätskontrolle. Derzeit arbeiten von rund 550 Mitarbeitenden in Leipzig ca. 150 Konsumenten und Power User mit der BI-Lösung. Die Anzahl von aktuell 10 Designern soll kontinuierlich erhöht werden.

Starkes Data & Analytics-Team

Das hohe Realisierungstempo verdankt SENEC auch der konsequenten Personalstrategie, mit der Katja Both Schub in das Thema Data & Analytics bringt. Erst im Jahr 2021 wurde die erste BI-Lösung im Unternehmen etabliert. Im Rahmen der aktuellen Implementierung ist das BI-Team innerhalb weniger Monate zum Bereich Data & Analytics mit BI-Experten, Data Analysts, Data Engineers und Data Scientists angewachsen.

Das Team unterstützt und befähigt die Fachbereiche durch Self-Services, Trainings und Standards. Katja Both erläutert: „Durch die Herausbildung von dezentralen Daten-Experten erreichen wir eine hohe Autonomie in den Fachbereichen und werden damit dem starken Unternehmenswachstum gerecht.“

Bei der Implementierung sorgten der Einsatz von Best Practices und Frameworks, die umfangreiche Projekterfahrung von QUNIS und der permanente Know-how-Transfer zu SENEC für effiziente Projektschritte und schnelle Erfolge. Während das Thema Data & Analytics seinen Projektcharakter zunehmend verliert und in eine Linienfunktion übergeht, wird SENEC die Weiterentwicklung der Plattform künftig intern mit eigenen Experten vorantreiben.

Hoch skalierbare Datenplattform

Das Ziel der Implementierung ist erreicht: Der Modern Data Stack erfüllt alle Anforderungen an fortgeschrittene Datenanalysen im Bereich BI, KI und ML.

Von strukturierten Finanzdaten bis zu Streaming-Daten stehen unterschiedlichste Datenarten in einem zentralen Speicher für flexible Auswertungen bereit. Die hohe Systemperformance sorgt dabei für schnelle Analysen bei umfangreichem Datenvolumen. Die Projektverantwortlichen heben zudem die Validität der Daten hervor. Die Herkunft und Verarbeitung von Kennzahlen ist nachvollziehbar und glaubwürdig, was das Vertrauen in die Plattform stärkt und hohe Nutzungsraten im gesamten Unternehmen fördert. Der Projektleiter Armin Geisler hält fest: „Wir gewinnen tiefere Insights für Geschäftsanalysen sowie Entscheidungen und einige Use Cases sind mit der leistungsstarken Plattform überhaupt erst möglich geworden.“

Lisa-Marie Krause, als Senior Data Engineer im Projekt verantwortlich für die technische Entwicklung, beschreibt den Status der IT-Umgebung zum Zeitpunkt der Inbetriebnahme:

Mit der Datenplattform steht das Gerüst.
Wir haben Richtfest gefeiert und können jetzt
in hoher Geschwindigkeit neue Use Cases
für die Datenanalyse umsetzen.

Lisa-Marie Krause
Senior Data Engineer, SENEC GmbH

Die hohe Taktzahl bei der Skalierung ist notwendig, denn aus dem gesamten Unternehmen kommen vielfältige Anfragen nach Use Cases im Umfeld von BI, KI und ML. Ein wesentliches Ziel der zentralen Plattform ist, künftig mehr Datenkompetenz in der Breite im Unternehmen zu verankern. Auch Armin Geisler nennt die Generierung neuer Use Cases mit schnellem Time-to-Market als wesentlichen Mehrwert: „Wir haben im Bereich Data & Analytics deutlich an technischer und fachlicher Skalierbarkeit gewonnen.“

Auf Basis der Single Source of Truth sollen die Fachbereiche künftig ihre Reports selbst aufbauen können – auch damit wird der fachliche Ausbau beschleunigt und im gesamten Unternehmen vorangetrieben.

Mehr zu SENEC: Seit 2009 entwickelt die SENEC GmbH in Leipzig intelligente Stromspeichersysteme und speicherbasierte Energielösungen. Mit SENEC.360 bietet das Unternehmen ein abgestimmtes Ökosystem zur nachhaltigen Rundum-Eigenversorgung, unter anderem bestehend aus Stromspeicher (SENEC. Home), Solarmodulen (SENEC.Solar), virtuellem Stromkonto (SENEC.Cloud) sowie E-Auto Ladestation (SENEC.Wallbox). Die Marke SENEC zählt inzwischen europaweit zu den führenden Anbietern für innovative Energie- und Speicherlösungen rund um Einfamilienhäuser – mit mehr als 120.000 verkauften Systemen und einem Beratungsnetzwerk von über 1.200 Fachpartnern. Seit 2018 ist die SENEC GmbH eine 100 %-ige Tochtergesellschaft der EnBW Energie Baden-Württemberg AG und beschäftigt über 570 Mitarbeiter*innen an den Standorten Leipzig und Köln sowie in Italien und Australien. Weitere Informationen: www.senec.com

Mehr zur QUNIS Implementierung

Microsoft Fabric – Data Driven in einer Technologie 

Erstellt am: Donnerstag, 1. Juni 2023 von Monika Düsterhöft

Microsofts konsequente Reise hin zur Datendemokratisierung 

Letzte Woche hat Microsoft auf der “Build-Konferenz” einige Neuerungen vorgestellt. Unsere Data & Analytics Ohren sind dabei natürlich insbesondere bei dem Thema “Microsoft Fabric” hellhörig geworden. Seitdem ist ein bisschen Zeit vergangen, die wir genutzt haben, das Neue von Microsoft einmal intern in unseren Innovation Labs und mit unseren Kunden zusammen genauer unter die Lupe zu nehmen. 

Alles unter einem Dach

Mit Microsoft Fabric wiederholt Microsoft sein Power BI-Erfolgsrezept und bündelt eine ganze Palette an Werkzeugen, auch aus dem Datenmanagement Bereich, unter einem neuen Dach. Das Dach heißt Microsoft Fabric.

Die Werkzeuge umfassen alles, was das Data (& Science)-Herz begehrt:  Data Integration, Data Engineering, Data Warehousing, Data Science, Real Time Analytics und Power BI selbst. Dabei sind die meisten Funktionen, die sich hinter diesen Diensten verbergen, nicht komplett neu in Azure, so ist in der Fabric Data Integration ein großes Stück Azure Data Factory zu finden, und auch das Data Engineering Feature hat die Besten Stücke rund um die serverless Spark Pools in Azure Synapse erhalten. 

Was auffällt ist die Einfachheit, mit der es Microsoft gelungen ist, all die Dienste im neuen Haus unterzubringen.

Das gelingt insbesondere durch zwei konsequent verfolgte Prinzipien:

  • SaaS überall! Der Fokus bei Microsoft Fabric ist auf Software-as-a-Service (SaaS) ausgelegt. Das heißt: Kein händisches verwalten von Servern! 
  • Ein gemeinsamer Standard: Onelake & Delta Lake. Alle Daten in Microsoft Fabric (ja, auch die im „Warehousing“ Bereich), werden in Onelake als Delta Tabellen gespeichert. Das ermöglicht den nahtlosen Wechsel von Werkzeugen in Microsoft Fabric basierend auf dem immer gleichen Daten & Zugriffen, die durch Onelake sichergestellt werden. Wir hoffen in Zukunft auch noch auf die Unterstützung von Iceberg. 

Neben der ganzen Nutzerfreundlichkeit und Einfachheit mit der Microsoft die Dienste im Fabric bündelt, gibt es zudem ein paar handfeste technologische Neuerungen:  

Mit „Direct Lake“ ist es nun möglich Dateien auf dem Lake aus Power BI abzufragen, OHNE dass wir zusätzlichen Compute wie z.B. Synapse Serverless benötigen oder etwa die Datasets regelmäßig aktualisieren müssen, um ein maximal performantes Nutzererlebnis durch importierte In-memory-Daten zu ermöglichen. Etwas ähnliches hat Tableau & Databricks über Delta Share zwar schon vor zwei Jahren angekündigt (Link), allerdings ist die Funktion bis heute nicht öffentlich verfügbar. Danke Microsoft für dieses Schmankerl! 

Auch Onelake fällt in eine Box, für die wir in unserem Beraterlager noch gar kein Label haben: Während Onelake viele aus dem Azure Data Lake Store Gen 2 (ADLS Gen 2) bekannte Funktionen mitbringt, hat auch hier Microsoft nochmal einen draufgesetzt: Es ist nun möglich mit dem altbekannten „abfss“-Treiber über OneLake nicht nur auf Daten in der Azure Cloud zuzugreifen und den Zugriff zu steuern, sondern sogar verbundene S3 Buckets können abgefragt werden. Für Abfragewerkzeuge innerhalb des Fabrics ist zusätzlich auch Row- und Columnlevel Security angekündigt. Das dies nur innerhalb des Fabrics funktioniert ist zwar schade, aber aus technischer Sicht absolut nachvollziehbar. 

Mit Fabric entwickelt sich Microsoft in die absolut richtige Richtung

Die Einfachheit mit dem Microsoft es schafft die Komplexität aus den verschiedensten Data Domänen zusammenzubringen hat uns wirklich beeindruckt. Damit rücken insbesondere alle Themen rund um Data Engineering ein gutes Stück näher an den Großteil der Datennutzer in Unternehmen. Und während das natürlich keine Ausrede für unsauberes Datenmanagement ist, kann Transparenz und Einfachheit gerade im Bereich Daten gar nicht hoch genug bewertet werden. 

Early Adopters aufgepasst: Aktuell gibt es noch viele Features die zwar angekündigt, allerdings aktuell noch nicht verfügbar sind. Das fällt uns bei der No-code-Komponente Data Activator deutlich einfacher als mit der fehlenden Zugriffssteuerung auf Tabellenebene.  

Unser Tipp: Wenn Sie mehr über Fabric wissen wollen, folgen Sie uns auf LinkedIn und Xing oder abonnieren Sie einfach unseren Newsletter. Wir bleiben an der Fabric dran und halten Sie über unsere Erkenntnisse und Learnings informiert.

Beurer: Zentrale Datenplattform für wachsende Unternehmensgruppe

Erstellt am: Montag, 23. Januar 2023 von Anja Gorbach

Die 1919 gegründete Beurer GmbH ist heute Marktführer im Segment Gesundheit und Wohlbefinden. Mit der Hilfe von QUNIS hat die erfolgreiche Unternehmensgruppe ein zentrales Data Warehouse aufgebaut und ein zukunftsfähiges Datenmanagement für das unternehmensweite Reporting etabliert.

Wir haben auf die Expertise, die Projekterfahrung und den Marktüberblick von QUNIS vertraut. Damit konnten wir im Data Warehouse-Projekt von Anfang an die richtigen Weichen stellen.


Florian Merk,
Leiter Controlling,
Beurer GmbH

Modernisierung der BI-Landschaft

Das Controlling der Beurer GmbH verfügt über viel BI-Erfahrung. Beurer hat bereits frühzeitig auf BI-Systeme der ersten Produktgeneration gesetzt und seine Berichtslandschaft seitdem kontinuierlich ausgebaut.

Seit einem Systemwechsel im Jahr 2011 ist das erfolgreiche Unternehmen allerdings stark gewachsen. Heute ist Beurer eine international aufgestellte Unternehmensgruppe mit über 30 Gesellschaften. Damit kam die grundlegende BI-Datenarchitektur zunehmend an ihre Grenzen. Die vorhandene einfache Staging Area mit dem ERP-System proAlpha als Vorsystem war nicht mehr ausreichend.

Beurer benötigte stattdessen ein Data Warehouse (DWH), in dem die heterogenen Datenquellen aller Tochtergesellschaften zusammenlaufen. Sowohl die Datenanlieferung an das zentrale Controlling als auch das Berichtswesen in die Unternehmensgruppe sollte auf dieser Grundlage wesentlich erweitert werden.

Data Warehouse mit hohem Automatisierungsgrad

Die Controller hatten klare Vorstellungen: Ziel war ein skalierbares Data Warehouse mit hohem Automatisierungsgrad, das der Fachbereich selbst steuern und weiterentwickeln kann. Die neue BI-Umgebung sollte außerdem die erste Cloud-Applikation bei Beurer werden. Um die nachhaltige Implementierung sicherzustellen und mögliche Umwege im Projekt oder spätere Sackgassen zu vermeiden, setzte das Projektteam auf QUNIS als Beratungs- und Implementierungspartner und vertraute auf die Expertise, die Projekterfahrung und den Marktüberblick.

Nach der Anforderungsanalyse, für die auch Wünsche der Berichtsempfänger zusammengetragen wurden, hat QUNIS zusammen mit den BI-Experten von Beurer das Data Warehouse in der Microsoft Azure Cloud implementiert. Viele Strukturen und Geschäftslogiken konnten dabei aus dem bestehenden Sales- und Finanzreporting übernommen werden.

Um eine konsistente, ausbaufähige Datenplattform zu schaffen, wurden im Rahmen der Implementierung auch Stammdaten harmonisiert. Das QUNIS Data Warehouse Framework (QDF) war hilfreich beim Design und der Etablierung von standardisierten Strukturen und Datenmodellen. Auf dieser Basis können beispielsweise zusätzliche Datenquellen angebunden, internationale Gesellschaften integriert und neue fachliche Themen auf einheitlicher Datenbasis abgebildet werden. Der hohe Automatisierungsgrad sorgt zudem für die sichere und einfache Administration im laufenden Betrieb.

Betrieb und Ausbau in der Fachabteilung

Während der Implementierung fand bereits der Know-how-Transfer ins Team von Beurer statt. Den weiteren Ausbau des DWH, die Anbindung der Tochtergesellschaften und die Ausgestaltung der Reports und das Rollout des Berichtswesens hat das Controlling seitdem selbst übernommen. Marc Hofmann, verantwortlich für das BI-Backend, bestätigt:

„QUNIS hat uns im Laufe des Projekts gut in das Data Warehousing eingearbeitet. Die Weiterentwicklung und das Rollout führen wir eigenständig durch.“

Bei der Auswahl des neuen Frontends Microsoft Power BI hat QUNIS ebenfalls unterstützt. Beurer wird sein neues Berichtswesen über Power BI schrittweise im gesamten Unternehmen ausrollen. Derzeit läuft das neue System parallel mit der vorigen Lösung, mit Absprungmöglichkeiten aus dem Altsystem. In einer zeitlich ausgedehnten Übergangsphase mit internem Schulungskonzept können sich die Nutzer allmählich mit der neuen Lösung vertraut machen.

Hohe Akzeptanz bei den Nutzern

Die Nutzungszahlen nach dem Rollout in Deutschland und in der Schweiz als erster Tochtergesellschaft sprechen schon jetzt für eine hohe Akzeptanz im Unternehmen. Im ersten Schritt wurden bereits 22 Reporting-Mappen aufgebaut. Schon vor Anbindung der internationalen Tochtergesellschaften greifen 120 User regelmäßig auf die neue Berichtsumgebung zu, mit stark steigender Tendenz. Die wichtigsten Reports werden derzeit 1.200 mal pro Monat geöffnet. Andreas Traut, zuständig für das BI-Frontend, stellt fest:

„Die Modernisierung kam zur richtigen Zeit. In den heutigen diffusen Märkten brauchen unsere Fachbereiche und Gesellschaften verlässlichen Kennzahlen; das Interesse am Reporting ist entsprechend stark gestiegen.“

Self-Service-BI mit klarer Datenhoheit

Fachlich liegt der Fokus derzeit auf dem Umsatzreporting mit klassischen vertrieblichen Steuerungsgrößen wie Deckungsbeiträgen und Margen. Neben differenzierten Informationen zu den Außenumsätzen der Tochtergesellschaften liegt der Fokus zukünftig vor allem auf Auswertungsmöglichkeiten konsolidierter Kennzahlen auf Konzernebene. Auf dieser Basis kann das Controlling der Unternehmensgruppe ein detailliertes Reporting zur Verfügung stellen.

Hinsichtlich der Informationsversorgung setzt Beurer schon seit Jahren auf Self-Service BI. Die Fachbereiche nutzen dabei auch unterschiedliche Ausgabeformate, z. B. Powerpoint-Folien mit Produktfotos im Produktmanagement. Dabei werden Power BI Berichtsseiten mit Live-Daten in Powerpoint eingebunden. Somit lassen sich schnell professionell aufbereitete Powerpoint-Präsentationen erstellen und monatlich auf den aktuellen Stand bringen.

Die Controller arbeiten natürlich nach wie vor gerne in Excel, das ebenfalls mit Live-Daten aus dem Data Warehouse gefüllt wird. Damit sind sehr flexible und individuelle Auswertungen für die Nutzer möglich.

Wichtig ist den projektverantwortlichen Controllern, dass sie mit dem Data Warehouse den Single Point of Truth (SPOT) und damit die Datenhoheit in der Hand haben – die wesentliche Voraussetzung für vertrauenswürdige Informationen und einheitliche Kennzahlendefinitionen.

Skalierbare Datenarchitektur

Mit dem zentralen Data Warehouse hat Beurer die Grundlage für seine unternehmensweite Datenplattform geschaffen. Der durchdachte Aufbau und die Vorteile der guten Vorarbeit im Backend wurden in späteren Projektphasen z. B. beim Berichts-Design und beim Rollout offensichtlich. Florian Merk hält fest:

„Bei der Ausgestaltung des Frontend-Bereichs wurde deutlich, dass QUNIS beim Aufbau des Data Warehouse weit vorgedacht hat. Wir können flexibel auf einer sauberen Datenbasis und strukturierten Logiken aufsetzen.“

 Auch die Einführung der einfach skalierbaren Cloud-Technologie war richtungsweisend für die Unternehmensgruppe. Inzwischen wurden bei Beurer weitere Projekte in der Azure-Cloud umgesetzt, die vom DWH-Projekt als Pilotanwendung profitieren konnten.Das Controlling-Team wird im nächsten Schritt alle Tochtergesellschaften an die Plattform anbinden.

Auch die fachliche Erweiterung ist bereits geplant. Zunächst soll das Reporting für die Bereiche Marketing und E-Commerce dazukommen, um danach schrittweise weitere Fachbereiche einzubinden.

Mehr zur Beurer GmbH: Die Beurer GmbH ist seit 1919 Marktführer im Segment Gesundheit und Wohlbefinden. Mit dem umfangreichen Sortiment in den fünf Produktbereichen wellbeing, medical, beauty, active und babycare bietet Beurer professionelle Produkte für die Heimanwendung – von Heizkissen, Personenwaagen, Massagegeräten und einem Produktsortiment zum Erhalt eines optimalen Raumklimas über spezielle Medizinprodukte wie Blutdruckmessgeräte und Blutzuckermessgeräte sowie Inhalatoren und Fieberthermometer bis hin zu Beautygeräten und Lifestyleprodukten.

Mehr zu QUNIS StrategieberatungQUNIS Strategie

Murrelektronik: Umstellung der BI-Landschaft auf SAP Datasphere

Erstellt am: Donnerstag, 12. Januar 2023 von Anja Gorbach

Murrelektronik ist ein global tätiger Spezialist für dezentrale Automatisierungstechnik. Das Controlling der Unternehmensgruppe hat in Zusammenarbeit mit QUNIS seine BI-Landschaft auf die SAP-Cloud umgestellt. Ein spannendes Projekt, weil das Tool SAP Datasphere zum Einführungszeitpunkt noch neu auf dem Markt war und selbst bei SAP kaum Praxiserfahrung vorlag.

In der komplett neuen Produktumgebung war ein fester Projektplan kaum einzuhalten. QUNIS hat sehr flexibel und agil mit uns zusammengearbeitet und die Datasphere Implementierung Schritt für Schritt mit uns umgesetzt.


Rafael Theiss,
Business Data Analyst,
Murrelektronik GmbH

SAP Datasphere-Implementierung als Pilotprojekt

Murrelektronik ist mit Niederlassungen, Produktions- und Logistik-Standorten sowie Vertriebspartnern in 50 Ländern weltweit vertreten. Die vorhandene BI-Lösung, die von einem externen Beratungshaus betreut wurde, konnte das Reporting für den agilen Konzern nicht mehr abdecken. Vor allem die fehlende Flexibilität bei nötigen Anpassungen war problematisch; die erforderliche Umsetzungsgeschwindigkeit neuer Anforderungen war in dieser Konstellation nicht mehr zu gewährleisten.

Das zentrale Controlling wollte daher seine BI-Plattform modernisieren und im eigenen Haus ansiedeln, um die Datenmodelle selbst nach Bedarf anpassen zu können. Im Konzern mit starker SAP-Strategie lag der Umstieg auf SAP-Tools für die neue BI-Umgebung nahe.

Besonders das noch relativ neu am Markt eingeführte SAP Datasphere bot für die Controller ein interessantes Konzept: Als Cloud-Technologie ist es kosteneffizient einzuführen und einfach skalierbar. Ein wichtiger Vorteil ist zudem die anwenderorientierte Entwicklung: Mit den sogenannten Spaces stellt SAP Datasphere einen Business Layer für die Datenmodellierung zur Verfügung, über den Fachbereiche ihre eigenen Datensichten erstellen können. Das vereinfacht die Steuerung des DWH im Controlling und schafft die Voraussetzung für Self-Service-Szenarien im gesamten Unternehmen.

Die Entscheidung für SAP Datasphere stand zu Projektbeginn fest. Als mögliche Frontends schauten sich die Controller auch Tools außerhalb der SAP-Welt an. SAP Analytics Cloud (SAC) in Kombination mit Datasphere stellte sich dabei als die beste Lösung für Murrelektronik heraus.

Mit QUNIS gemeinsam DWH-Neuland betreten

Bei der Suche nach einem Realisierungspartner war dem Projektleiter Rafael Theiss klar, dass es so kurz nach Markteinführung von SAP Datasphere keinen Dienstleister mit großer Implementierungserfahrung für dieses Tool geben konnte.

Im Auswahlverfahren überzeugte QUNIS durch seine umfangreiche Erfahrung in den Bereichen Data Warehousing, BI und Analytics mit Cloud- und On-Premise-Technologien, gepaart mit sehr hohem Engagement und Interesse an der Datasphere-Umgebung. Rafael Theiss, Business Data Analyst bei Murrelektronik, sah darin die besten Voraussetzungen für eine erfolgreiches gemeinsames Implementierungsprojekt im DWH-Neuland.

Agile Zusammenarbeit im Team

Nach ersten Vorarbeiten Ende 2020 startete die Implementierung mit Systemzugriff für das Projektteam auf die Datenquellen und das Altsystem im März 2021. Zunächst arbeiteten hauptsächlich Rafael Theiss und die QUNIS-Beraterin an der Umsetzung.

Rafael Theiss hebt besonders den Einsatz der QUNIS-Beraterin hervor, die mit hohem Engagement und lösungsorientiertem Vorgehen wesentlich zum Projekterfolg beitrug. Bei der Schnittstellen-Definition wurde das Kernteam durch die IT-Abteilung unterstützt. Auch die Key User der Anwendung wurden zunehmend einbezogen. Erst in späteren Projektphasen kam dann ein „SAP Development Angel“ dazu, der hilfreiches Produktwissen einbringen konnte.

Wichtig für das Gelingen des Projekts war die flexible Reaktion von QUNIS auf den Projektstatus. Durch vielfältige Herausforderungen im Pilotprojekt verzögerte sich der geplante Rollout-Termin um sechs Monate. QUNIS begleitete das Team von Murrelektronik auch über die ursprüngliche Projektplanung hinaus bis zum erfolgreichen Go live und steht auch weiterhin als Ansprechpartner für die Controller bereit.

Weltweite Datenplattform für über 600 Anwender

Seit Februar 2022 ist die Berichtsplattform weltweit bei Murrelektronik verfügbar. Nach einer kurzen Übergangsphase, in der Neu- und Altsystem parallel liefen, erfolgte der konsequente Umstieg in die SAP Cloud, die seitdem als zentrale Berichtsumgebung mit einheitlicher Datenbasis im Konzern etabliert ist.

Fachlich hat das Projektteam das umfangreiche Reporting aus dem Altsystem übernommen und optimiert. Das neue Data Warehouse ist als ganzheitliche Lösung für derzeit 600 Anwender konzipiert. Kernthemen sind das Finanz- und Vertriebscontrolling, wobei auch vielfältige Analysen im operativen Bereich zur Verfügung stehen. Hauptsächliche Datenquelle für die Auswertungen ist SAP ERP. Um das Analysespektrum zu erweitern, wird derzeit auch Salesforce als Quellsystem integriert.

Ein wesentlicher Anspruch des zentralen Controllings ist dabei die Anwenderfreundlichkeit: Jeder soll das System einfach nutzen und verstehen können. Dazu trägt auch das Frontend SAP Analytics Cloud (SAC) bei, über das die Anwender komfortabel per Web auf ihre Berichte und Analysen zugreifen können.

Neue fachliche Anforderungen schnell umsetzen

Mit dem erfolgreich abgeschlossenen Projekt gehört Murrelektronik zu den Vorreitern beim Einsatz von SAP Datasphere mit SAP SAC. Die Projektziele sind erreicht: der Wechsel der Plattform, die Verlagerung der Systemsteuerung ins eigene Haus und der Aufbau der entsprechenden internen Kompetenzen sind gelungen. Auch der Plan, mit dem anwenderorientierten Datasphere die Taktzahl im Anforderungsmanagement zu erhöhen, ist aufgegangen.

Rafael Theiss bestätigt: Mit SAP Datasphere haben wir die Datenmodelle im Controlling selbst in der Hand und können unser Data Warehouse jederzeit an neue Anforderungen anpassen.“ 

Die Anwender profitieren von übersichtlich visualisierten Daten im modernen Frontend. Anstelle der vorigen Excel-Tabellen stehen nun Berichte mit dynamischen Grafiken bereit. Die Berichtempfänger haben zudem deutlich mehr Auswertungen zur Verfügung und können selbst Analysen fahren.

Das zentrale Controlling verfolgt hier ein Self-Service-BI-Konzept (SSBI), das über die jeweiligen Key User konzernweit etabliert wird. Auch hinsichtlich der SSBI-Strategie hat sich SAC zwischenzeitlich als das passende Frontend für Murrelektronik erwiesen.

Nachdem im Rahmen der Implementierung vielfältige neue Anforderungen umgesetzt wurden, wird die Applikation derzeit mit Blick auf die Anwenderorientierung nachgeschärft. Wichtige Anliegen sind Rafael Theiss auch der Know-how-Aufbau im Umgang mit der Datenplattform in der gesamten Nutzergemeinde und die Sicherung der Datenqualität. Im nächsten Ausbauschritt soll das Data Warehouse dann um ein Planungstool ergänzt werden.

Mehr zur Murrelektronik GmbH: Murrelektronik ist ein führendes Unternehmen in der Entwicklung und Herstellung hochmoderner dezentraler Automatisierungstechnik für Maschinen und Anlagen. Das Unternehmen konzentriert sich dabei auf vier Kernbereiche: Stromversorgung, Schnittstellen, Anschlussleitungen und IO-Systeme. Innovative Produkte in herausragender Qualität, eine ausgeprägte Markt- und Kundenorientierung machen Murrelektronik einzigartig und verbessern die Maschinen und Anlagen der Kunden.

Mehr zu QUNIS StrategieberatungQUNIS Strategie

AT&S: Aufbau einer unternehmensweiten Data & Analytics-Plattform

Erstellt am: Montag, 12. Dezember 2022 von Anja Gorbach

Der weltweit tätige Hersteller von Leiterplatten AT&S baut schrittweise eine unternehmensweite Data & Analytics-Plattform auf. Grundlage ist eine ausgefeilte Datenstrategie, die den nachhaltigen Ausbau und Betrieb des zentralen Datenpools entsprechend den fachlichen
Anforderungen im Konzern sicherstellt.

QUNIS unterstützt uns auf allen Ebenen: Von der strategischen
und technologischen Beratung über die fachliche Konzeption
bis zur Implementierung samt Coaching und Koordination aller Stakeholder.


Ulrike Klein,
Manager Enterprise Data Management IT,
AT&S Austria Technologie & Systemtechnik

Strategische Analyseplattform, die systematisch mit ihren Use Cases mitwächst

Das High-Tech-Unternehmen AT&S will den Wert seiner weltweit anfallenden Daten besser ausschöpfen. Erklärtes Ziel der Unternehmensleitung ist es, dass AT&S sich zum konsequent datengetriebenen Unternehmen entwickelt. Nach einer internen Bestandsaufnahme der bereits vorhandenen BI-Lösungen, Dashboards und Kennzahlen kam man zum Schluss, dass es sich durchweg um Insellösungen und Datensilos mit begrenztem Ausbaupotenzial handelt.

Daher sollte eine von Grund auf neue Data & Analytics-Plattform für alle Standorte und Fachbereiche mit moderner Architektur und unternehmensweiter Organisation aufgesetzt werden. Den Projektverantwortlichen war klar: Der nachhaltige Aufbau und Betrieb in konzernweiten Standards erforderte eine umfassende Data & Analytics-Strategie.

Als Beratungs- und Implementierungspartner wurde QUNIS ausgewählt. Neben der herausragenden Kompetenz und Erfahrung fand die Projektleitung auch die individuelle Ansprache und pragmatische Vorgehensweise von QUNIS wichtig für die erfolgreiche Zusammenarbeit. Im Juni 2020 startete das Projekt mit einem gemeinsamen Analyseworkshop. Sehr konkret wurden hier bereits die wesentlichen Ziele und Anforderungen herausgearbeitet, die das weitere Vorgehen bestimmen:

  • In einer Konzeptphase sollten die Datenarchitektur, Technologien, Data Governance und die entsprechende Organisation mit Rollen und Verantwortlichkeiten in der IT und den Fachbereichen geklärt werden.
  • Ein neues Data Warehouse soll entstehen. Zur Integration von Datenquellen und Aufbau der Kennzahlen wurde eine Use-Case-getriebene Datenstrategie beschlossen; d.h. das strukturierte Datenmodell wächst systematisch mit den jeweiligen Data Marts der schrittweise umgesetzten Anwendungen.
  • Der erste Use Case ist der Bereich Yield im Rahmen des Qualitätsmanagements, der Schlüsselkennzahlen für die Produktionssteuerung liefert. Hierfür ist das neue Data Warehouse in der vorhandenen On-Premises-Umgebung des Microsoft SQL Servers die geeignete Lösung.
  • Das DWH soll später mit Cloud-basierten Technologien zum Data Lake erweitert werden können, um Advanced Analytics und operative Lösungen wie Predictive Maintenance mit Produktions- und Sensordaten umsetzen zu können.
  • Wichtig für die unternehmensweite Initiative ist ein Priorisierungs- und Eskalationskonzept, das die sichere Einordnung von Anforderungen und Kommunikation mit den Fachbereichen gewährleistet.
  • Als Best Practice für das neue DWH dient die QUNIS Automation Engine (QAE), ein toolgestützter Ansatz, der den Aufbau und Betrieb von Data-Warehouse-Lösungen inklusive BI- und Datenmanagement-Prozessen standardisiert und automatisiert.

Den Anfang macht das Qualitätsmanagement

Die Strategie wurde innerhalb von drei Monaten entwickelt und ausformuliert. Auf dieser Grundlage wurde das Fachkonzept der Yield-Kennzahlen samt technischer Anforderungen als erste Anwendung aufgesetzt. Die Yield-Werte, die in der Leiterplattenanfertigung den aus einem Fertigungsnutzen generierten Ertrag (brauchbarer Leiterplatten) angeben, sind für AT&S eine zentrale Performance-Stellschraube. Höhere Yield-Werte bedeuten eine höhere Produktionsausbeute bei geringeren Kosten. Durch ein NCC-Reporting (Non Conformance Costs) wurde zudem die Betrachtung der Kostenseite noch weiter verfeinert.

Die Implementierung nach dem QAE-Ansatz startete im November 2020 als Proof of Concept für das Data Warehouse. Der umfangreiche Yield-Bereich ist inzwischen als Beta-Version auf der Proof-of-Concept-Umgebung verfügbar, während das überschaubarere NCC-Reporting bereits im Live-Betrieb ist.

Als Frontend für das Rollout der Datenplattform ist Microsoft Power BI im Einsatz. QUNIS hatte das Projektteam hier bei der Auswahl einer geeigneten Frontend-Technologie unterstützt. Das Qualitätsmanagementreporting wurde inzwischen um ein Modul für das Supply Chain Management und eine operative BI-Anwendung mit Produktions- und Maschinendaten ergänzt.

Auch alle künftigen Module werden mithilfe eines strukturierten Anforderungsmanagements realisiert. Über ein Ticketing-System in der IT werden dazu Requests nach Aufwand und Nutzen gesichtet und priorisiert.

Agile Entwicklung und Rollout über die BI-Organisation

Die anfangs definierte Organisationsstruktur bewährt sich im Projektmanagement. Federführend ist das in der IT angesiedelte EDM-Team (Enterprise Data Management Team), das im Rahmen der unternehmensweiten Data Governance auch standardisierte Stamm-, Referenz und Metadaten etabliert. Zum EDM-Team gehören u.a. Rollen wie der Data Engineer, Solution Architect und Data Architects. Ansprechpartner in den Fachbereichen sind die Key- und Power User.

Als großer Vorteil erweist sich die agile Vorgehensweise. Im umfassenden Projekt ist die Realisierung in überschaubaren Sprints motivierend für das Team. Außerdem lässt sich die parallele Arbeit an mehreren Teilprojekten gut organisieren. Auch die Zusammenarbeit mit den Fachbereichen verläuft durch sprintweise Entwicklungsfortschritte und die gezielte Aufgabenverteilung an die jeweiligen Key User transparent und sicher.

Das EDM-Team berichtet direkt an die IT-Leitung und kann sich im konzernweiten Projekt auf den Rückhalt des Vorstands verlassen. QUNIS unterstützt von der strategischen und technologischen Beratung über die fachliche Konzeption bis zur Implementierung samt Coaching und Koordination aller Stakeholder.

Self-Service erfordert ein durchdachtes Backend

Mit den ersten Anwendungen werden bereits handfeste Vorteile sichtbar. Das Yield Management schafft Transparenz über Ausschussquoten, granular und konsolidiert über verschiedene Werke. Die NCC-Zahlen sind komplett neue Steuerungsinformationen für die Fachbereiche.

Erstmals ist zudem eine Self-Service-Informationsversorgung möglich, die Unabhängigkeit in die Fachbereiche bringt. Ulrike Klein hat jedoch vor allem das Gesamtbild im Blick. Ihr Team fokussiert sich auf den nachhaltigen Aufbau von Data Marts im Rahmen des unternehmensweiten Datenmanagements:

„Wir wollen gut dokumentierte Daten in Top-Qualität zur Verfügung stellen. Mit Zugriff auf ihre jeweiligen Data Marts und den Data Catalog können die Fachbereiche dann ihre eigenen Applikationen auf standardisierter Datengrundlage selbst aufbauen.“  

Skalierung auf Basis der tragfähigen Strategie

Die Data & Analytics-Plattform von AT&S befindet sich noch in der Anfangsphase. Mit der Umsetzung weiterer Use Cases entsteht Schritt für Schritt eine breite, verlässliche Datenbasis, mit Informationen zu ihrer Herkunft, Bedeutung und dem jeweiligen Data Owner im zentral verfügbaren Data Catalog.

Schon jetzt können auf dieser Basis kleinere Applikationen wie eine Balanced Scorecard sehr schnell nach Nutzerbedarf abgebildet werden. Diese „Quick Wins“ sind aber nicht das Ziel des EDM-Teams, das sich vornehmlich auf den systematischen Ausbau des Datenpools konzentriert. Jeder Use Case erfordert dabei eine sorgfältige Vorbereitung und auch eine kontinuierliche Weiterentwicklung der Datenkompetenz im Team.

Für dieses langfristig angelegte Datenprojekt sieht sich Ulrike Klein durch die umfassende Data & Analytics-Strategie gut gerüstet: „Die definierte Strategie gibt uns den Plan für den weiteren Ausbau vor. Wir müssen nicht jedes Mal neu entscheiden und können Fragen der Fachbereiche jederzeit beantworten.“

Die Architektur, die Infrastruktur, die Entwicklung auf Basis des strukturiertem Anforderungsmanagements und die professionelle Organisation sind gesetzte Grundpfeiler. Einzelne Bausteine wie Anwendungen, die Organisation oder die Governance können in diesem Grundgerüst durch einfache Skalierung wachsen. Auch Details wie beispielsweise das Staffing des EDM-Teams lassen sich auf dieser Grundlage gut planen.

Spätere Ausbaustufen wie der Einbezug neuer Cloud-Technologien sind durch die Strategie ebenfalls abgedeckt. Ulrike Klein sieht diese sichere Planungsgrundlage als zentralen Erfolgsfaktor für die nachhaltige Entwicklung von AT&S hin zum datengetriebenen Unternehmen.

Mehr zur AT & S Austria Technologie & Systemtechnik AG: AT&S ist einer der weltweit führenden Hersteller von hochwertigen Leiterplatten und IC-Substraten. AT&S industrialisiert zukunftsweisende Technologien für seine Kerngeschäfte Mobile Devices, Automotive, Industrial, Medical und Advanced Packaging. Als internationales Wachstumsunternehmen verfügt AT&S über eine globale Präsenz mit Produktionsstandorten in Österreich (Leoben, Fehring) sowie Werken in Indien (Nanjangud), China (Shanghai, Chongqing) und Korea (Ansan nahe Seoul).

Mehr zu QUNIS StrategieberatungQUNIS Strategie

Digital Workplaces, Data Literacy, Cloud, Data Catalogs und mehr – das bewegt die Data & Analytics-Welt

Erstellt am: Dienstag, 31. Mai 2022 von Monika Düsterhöft

Das Thema Data & Analytics hat deutlich an Fahrt aufgenommen: Die Initiale für Projekte und Initiativen sind dabei so vielfältig wie nie zuvor. Die Herausforderungen und Antworten darauf ebenso.

Viele Organisationen stellen sich aktuell IT-seitig komplett neu auf

Aus selbst definierten strategischen Gründen oder auch weil technische Erweiterungen von Softwareherstellern eine komplett neue Ausrichtung erfordern. Dabei wird kaum noch monolithisch alles einer einzigen, zentralen Strategie unter­geordnet. Stattdessen eröffnen sich heterogene Welten beispielsweise mit Cloud-Angeboten, Spezialapplikationen unter anderem für Product-Lifecycle-Management oder Firmendatenbanken wie etwa Produktinformationssysteme.

Diese Entwicklung erfordert angesichts der Vielfalt und Komplexität der Aufgaben im Kontext von Data & Analytics umso mehr feste Konzepte für das Stamm- und Metadaten-Management. Schließlich gilt es, jederzeit den Überblick zu bewahren und Transparenz zu gewährleisten.

Ebenso geht nicht erst seit, aber forciert durch Corona der Trend hin zum verteilten Arbeiten. Sogar Unternehmen, die sich vor nicht allzu langer Zeit noch dagegen gesperrt haben, stellen mittlerweile Digital Workplaces bereit. Auch hier spielt die Cloud eine zunehmend wichtige Rolle, um den mobilen Zugriff auf die Systeme etablieren und von der Infrastruktur her überhaupt ausrollen zu können. Über die Technologie hinaus erfordert dies vielfach neue Konzepte und Handlungsweisen.

Zudem betrifft die Digitalisierung die unterschiedlichsten Bereiche in einem Unternehmen – ob in der Kommunikation, im Vertrieb, dem Kundenservice oder der HR-Abteilung. Neben dem elementaren Organisationsmanagement, das die Struktur des „Gesamtkonstrukts Digitalisierung“ steuern und optimieren soll, benötigen diese Transformations- oder vielmehr Veränderungsprozesse immer auch ein gutes Change Management. Denn nicht nur die Prozesse müssen stimmen, sondern die Menschen dahinter müssen abgeholt und mitgenommen werden, um die veränderten Prozesse dauerhaft und erfolgreich im Unternehmen zu etablieren.

Damit einher geht auch der steigende Bedarf an Kompetenzen, dem sogenannten Upskilling. Die zunehmend digitalisierte Arbeitswelt erfordert abteilungsübergreifende Kompetenzerweiterungen; das gilt für den IT- und Technik-Bereich, aber auch in Marketing & Kommunikation und erstreckt sich ebenso über Anforderungen wie Mitarbeiterentwicklung, Problemlösungskompetenzen oder Konfliktmanagement bzw. Teamwork. Das alles muss bedacht und umgesetzt werden, da sonst Digitalisierungsinseln entstehen und ein Scheitern des ganzheitlichen Ansatzes vorprogrammiert ist.

Datenlandschaften gehören erweitert, sichere Zugänge gewährleistet

Immer bedeutender werden die sogenannten Digitalen Zwillinge oder auch Digital Twins. Dabei handelt es sich um digitale Nachbauten von physischen Objekten, Produkten und Services. Diese müssen in die Prozesslandschaften integriert werden, damit Simulationen und Forecasts rein digital stattfinden können – interessant ist dies beispielsweise für Produktentwicklung oder Qualitäts­management.

Die Daten als erfolgsentscheidendes Asset zu begreifen und entsprechend zu nutzen, bedeutet in der Konsequenz: Alle Mitarbeiter müssen im Sinne von Data Literacy (ein neu aufge­kommenes Buzzword) möglichst einfachen Zugang zu den Daten haben – und dies umso mehr an den Stellen, an denen sie Potenzial zu einem echten Mehrwert mitbringen. Das zu ermöglichen, zeigt sich als weiterer Treiber für Data & Analytics-Projekte.

Durch all dies zieht sich der effiziente und nachhaltige Schutz der Daten wie ein roter Faden. Dabei geht es sowohl um alltägliche Dinge wie Zugriffsrechte als auch um heikle Themen, Stichwort Cyber-Kriminalität. Hier stellt der Gesetzgeber teils klare Forderungen. Vor diesem Hintergrund sind deutlich strukturiertere Vorgehensweisen erforderlich, als sie bislang vielerorts praktiziert wurden.

Das gilt ganz speziell für das Umfeld von Data & Analytics, wo aus bloßen Daten wahre Daten­schätze entstehen und zu schützen sind. Gerade in Cloud-Umgebungen muss man genau hinsehen, wo genau und wie die Daten gespeichert werden und wer Zugriff darauf hat.

Datengetriebene Produkte und Services schüren Innovationskraft

Sah es noch vor einem Jahr n ganz anders aus, so werden heute bei uns viel mehr Add-Ons zu den Bestands­produkten, Erweiterungen zu bestehenden Devices oder auch Zusatzservices und Dienstleistungen nachgefragt. Dieser Trend zur Anbindung von Geräten zeigt sich auch im privaten Umfeld, wo sich mittlerweile der Kühlschrank, die Heizung, das Auto und anderes mehr problemlos mit dem Internet verbinden lassen.

Viele Unternehmen wollen darüber ihr bisheriges Business-Modell von Verkaufen auf Vermieten umstellen, um so neuen Marktanforderungen gerecht zu werden. Auch hier entstehen große Mengen an hochwertigen Daten, die in der Analytics-Welt gewinnbringend genutzt werden können. Ein Beispiel von vielen: In unseren Kundenprojekten nehmen wir verstärkt einen Trend zur Produktindividualisierung wahr.

Hierfür stehen die Organisationen jedoch vor der Herausforderung, möglichst genau zu wissen, an welcher Stelle sie mit der Individualisierung ansetzen können und inwieweit dies überhaupt lohnenswert ist. Die notwendigen Daten dafür liefern Data & Analytics.

Technologie wird zum Service

Es zeichnet sich ganz allgemein eine Entwicklung dahingehend ab, dass die technologischen Konzepte, die in den vergangenen zehn bis fünfzehn Jahren gut funktioniert haben, in unseren zunehmend dynamischen Zeiten an ihr Limit stoßen: Aktuelle Herausforderungen erfordern moderne und innovative Methoden und Werkzeuge. Unternehmen müssen daher konkrete Über­legungen über ihre künftige Ausrichtung anstellen.

In diesem Kontext wird Technologie zum Service. So gehen derzeit zwischen 70 und 80 Prozent aller neu begonnenen Projekte von QUNIS in Richtung Cloud-orientierter Nutzung von Services. Die Organisationen bauen nicht mehr inhouse Technologien auf, sondern verwenden teils komplette Softwarelösungen verschiedener Cloud-Anbieter als Managed Services. Dabei wird je nach Anwendungsfall sehr häufig auch auf hybride Architekturen gesetzt, bestehend aus der Kombination von Cloud- und On-Premise-Systemen.

Generell jedoch ist festzustellen, dass Cloud-Architekturen nicht mehr nur auf dem Vormarsch sind, sondern speziell in der Data & Analytics-Welt sogar überwiegen.

Oft nämlich könnten die Unternehmen die angebotenen Services gar nicht eigenständig betreiben, weil ihnen die erforder­lichen Ressourcen und das entsprechende Know-how für die teils sehr komplexen Technologien fehlen. War es beispielsweise in früheren Zeiten noch mit dem Aufbau eines kleinen Data Ware­houses getan, sind heute deutlich mehr Spezialtechnologien notwendig wie etwa Machine-Learning-Algorithmen.

Immer mehr Daten werden in zunehmend mehr Anwendungsfällen verarbeitet. Aufgrund dessen wird eine nochmals verbessere Usability für die Nutzer mit möglichst niedrigen Eintritts­hürden schlichtweg erfolgsentscheidend bei der Anwendung der unterschiedlichen Technologie­produkte.

Hier bewähren sich Business-Glossars und Data Catalogs, mit denen sich die zunehmenden Datenvolumina automatisiert ordnen und vereinheitlichen lassen. Metadaten-Management-Lösungen können dabei helfen, mit den Daten und modellierten Inhalten besser und unkomplizierter zu arbeiten.

Data & Analytics wächst und weitet sich aus

Branchenübergreifend zeigt sich, dass Organisationen fachlich gesehen mit immer heterogeneren Datenformaten umzugehen haben, um daraus ihre Erkenntnisse zu gewinnen. Dazu zählen im Kontext von Data & Analytics beispielsweise Sensordaten und Texte, aber auch Bild- und Audio-Material.

Gleichzeitig werden die Anwendungsfälle tendenziell businesskritischer. Bislang beispielsweise war ein kurzfristiger Ausfall des BI-Systems nicht sonderlich problematisch, weil es nicht direkt relevant für die operative Ebene war, sondern lediglich steuernd und informativ. Heute hingegen greifen wir hierüber in Echtzeit tief in die Prozesse hinein und generieren Erkenntnis­gewinne für die operative Steuerung etwa von Produktions- oder Logistikprozessen oder hinsichtlich der Up- und Cross-Selling-Potenziale von Webshops.

Zudem verzeichnen wir stetig komplexere Self-Service-Anforderungen. Die Nutzer möchten etwa nicht mehr nur schnell ein einfaches Dashboard selbst bauen. Sie fordern vielmehr techno­logische Strukturen, um über den Self-Service-Ansatz beispielsweise Massendaten selbstständig auswerten zu können. Da es ihnen hierbei jedoch an der jahrelangen Erfahrung echter Experten mangelt, entsteht entsprechender Anleitungsbedarf – dabei müssen Standardisierung und Harmoni­sierung natürlich jederzeit gewährleistet bleiben.

Wahl der Plattform wird zweitrangig

Bei der Wahl der Infrastruktur gibt es für Unternehmen verschiedene Optionen: On-Premise, Public Cloud in Form von PaaS und SaaS oder Container-Strategien. Häufig nutzen Unternehmen auch eine Multi-Cloud-Strategie mit mehr als nur einem Hyperscaler. Eine wichtige Rolle spielt hier die Portierbarkeit, damit zu jeder Zeit die Flexibilität erhalten bleibt, den Cloud-Anbieter gegebenenfalls problemlos wechseln zu können. Alternativ entscheiden Organisationen sich von vornherein für eine hybride Lösung aus Cloud und On-Premise.

Nicht zuletzt wird die Rolle von Open-Source-Technologie zunehmend bedeutender. In der klassischen BI-Welt weniger eingesetzt, kommt sie im Umfeld von Streaming, Big Data, Machine Learning sowie bei Prozessen auf Basis von Massendaten jetzt verstärkter zum Einsatz – mit dem Potenzial, den Markt nahezu zu dominieren.

Data Management Units zur Umsetzung Ihrer Datenarchitektur 

Das Thema Architektur und wie sich Architekturen verändern kann man derzeit als klaren Trend am Markt erkennen. In diesem Zusammenhang bieten wir bei QUNIS je nach der Zielsetzung, die Unternehmen mit ihrer jeweiligen Data & Analytics-Strategie verfolgen, sogenannte Data Management Units (DM Units) an. Diese bilden das Herzstück der Datenverarbeitung und -speicherung bei Data & Analytics-Initiativen.

Mit Self-Service-BI, Data Warehouse, Data Warehouse & Data Lake, Lakehouse und Streaming stehen insgesamt fünf DM Units mit einem jeweils unterschiedlichen Leistungsspektrum zur Verfügung.

Welche DM Unit für ein Unternehmen infrage kommt, hängt dabei immer von der Ausrichtung der künftigen Architektur ab. Die Entscheidung darüber sollte stets vorab getroffen werden, weil sich etwa die eher pragmatische Variante Self-Service-BI im Nachhinein nicht so schnell in ein komplexeres Lakehouse umwandeln lässt. Mit verschiedenen Add-Ons lassen sich die zentrale Datenspeicherung und -verarbeitung der DM Units modular um zusätzliche Funktionen erweitern. In jedem Fall notwendig sind Visualization & Reporting, Monitoring und Process Control, hinzu kommen optionale, teils kombinierbare Add-Ons wie beispielsweise für API, Virtualisierung oder Metadaten-Management wählbar.

Ihr Thema ist mit dabei? Sie haben sich und Ihre aktuellen Herausforderungen widererkannt und wünschen sich dafür Beratung und Begleitung von QUNIS und unseren Experten?

Sprechen Sie einfach Ihren QUNIS-Berater*in an oder schreiben Sie direkt eine E-Mail an team@qunis.de und verraten Sie uns ein wenig mehr zu Ihrer Motivation, Ihren Zielen und Vorhaben. Wir freuen uns auf den Austausch und die Diskussion mit Ihnen.

Modern Data Worker: Wer sie sind, wie sie sich unterscheiden, was sie antreibt?

Erstellt am: Montag, 17. Januar 2022 von Monika Düsterhöft

Nicht nur die Menge und Verfügbarkeit von Daten, auch das Thema Datenarbeit und die Aufgaben, die sich drumherum ranken, haben sich in den letzten Jahren rasant verändert und weiterentwickelt.

Zu den Experten und Spezialistinnen für Business Intelligence (BI), die vor allem in den Finance & Controlling-Abteilungen, bei Software-Anbietern und Beratungshäusern zu finden waren und die von jeher das Thema Data Management besetzt hatten, sind mit dem unternehmensweiten Einzug von Digitalisierung, Big Data, Cloud-Services sowie der Demokratisierung von Daten neue Anforderungen und Bedarfe hinzugekommen.

Neue Aufgaben, Rollen und Berufsbilder haben sich herausgebildet und die Data Scientisten, Data Architekten und Data Engineers sind auf der Bildfläche erschienen.

Allen gemein ist zunächst das Interesse an und die Arbeit mit Daten – aber was genau ist ihr Ziel, was macht sie speziell, was macht sie glücklich und mit welchen Technologien und Methoden arbeiten sie? Wie funktionieren sie zusammen und wo unterscheiden sie sich? Nachfolgend haben wir eine kleine Einordnung für Sie zusammengestellt. Diese soll helfen, die verschiedenen Disziplinen der Modern Data Worker ein wenig besser zu verstehen:

1. BI & Data Manager

BI steht für Business Intelligence und das wiederum steht für Geschäftsanalytik. Kurzum: die systematische Analyse von verfügbaren, meist in strukturierter Form vorliegender Unternehmensdaten. Ziel dabei ist es, möglichst optimale Entscheidungen für das Unternehmen treffen zu können bzw. die Entscheidungsprozesse bestmöglich mit Erkenntnissen aus Daten zu unterstützen sowie Geschäftsabläufe, Kunden- und Lieferantenbeziehungen zu verbessern.

Ein BI & Data Manager legt die Grundlage dafür, in dem verschiedenste Datenquellen angebunden und die relevanten Daten in ein Data Warehouse bzw. einen Data Lake integriert werden. Dafür müssen Schnittstellen zu den unterschiedlichen Datenquellsystemen geschaffen, Daten miteinander verknüpft und formatiert sowie schrittweise veredelt werden.

Ein weiterer zentraler Aspekt ist die Umsetzung der übergreifenden Geschäftslogik, damit die Daten am Ende auch in einer einheitlichen und vergleichbaren Form vorliegen. Dies können unterschiedlichste Logiken sein wie z. B. die Historisierung von Daten, Datenqualitätsprüfungen oder eine einheitliche Währungsumrechnung. Ein Data Manager liefert mit dem Aufbau und der Bereitstellung von logischen Datenmodellen das zentrale Fundament für darauf aufbauende Reports, Dashboards oder weiterführende Analysen.

Im Bereich des Information Designs werden die bereitgestellten Daten mit einem geeigneten Frontend-Werkzeug wie beispielsweise Excel, Power BI, Pyramid Analytics oder vergleichbaren Tools visualisiert und je nach Zielgruppe entsprechend aufbereitet. Hier spielt die Art und Weise der Darstellung eine zentrale Rolle, Standards für die Visualisierung und fokussiertes Data Storytelling sind in dieser Disziplin entscheidende Erfolgsfaktoren.

Ein BI & Data Manager liebt Daten und deren Aufbereitung bis zur passenden Visualisierung. In diesen Bereichen fühlt er sich wohl und löst so manche Knobelaufgabe, wenn es darum geht, wie man bestmöglich die Daten für Endanwender, Power User oder Analysten vorbereiten und bereitstellen kann.

2. Data Scientists

Während die BI-Welt auf sauber aufbereiteten, tabellarisch strukturierten Daten fußt, geht es in der Data-Science-Disziplin etwas wilder zu. Hier werden analytische Applikationen entwickelt, indem entsprechende Technologien wie u. a. Machine Learning oder Data-Science-Plattformen eingesetzt werden. Zudem ist ein tiefes Prozessverständnis erforderlich, damit die Anforderungen der Fachanwender an die Analyseergebnisse auch interpretiert werden können.

Vor einem Data Scientist sind auch unaufbereitete, untabellarische, unstrukturierte Daten nicht sicher: Data Scientists werten nicht nur strukturierte Tabellen aus, sondern auch Fotos, Texte, Videos und Sprachnachrichten. Dafür ist es häufig erforderlich, diese heterogenen Datenbestände vor- bzw. aufzubereiten. Um eine grundlegende Struktur in die Daten zu bekommen, nutzen sie mathematische bzw. statistische Algorithmen, Verfahren zum Clustern der Daten und zum Erkennen von Anomalien.

Data Scientists adaptieren die neuesten Verfahren zur Datenauswertung, sie arbeiten in Python und R und bauen dabei vor allem auf die Open-Source-Welt; Docker, Kubernetes, Tensorflow und github sind aus ihrem Arbeitsalltag nicht wegzudenken. Data Scientists arbeiten sehr eng mit Data Engineers zusammen. Diese kümmern sich um die gesamte Dateninfrastruktur, damit die Data Scientists ihre komplizierten Berechnungen und Datenauswertungen realisieren können.

3. Data Architects

Bevor ein Data Engineer die Dateninfrastruktur jedoch erstellen kann, sollte ein Data Architect sie konzipieren. Das kann man sich so vorstellen wie beim Hausbau: Architekten planen hier zunächst, wie ein Haus gebaut oder umgebaut werden soll. Sie berücksichtigen dabei technische, wirtschaftliche, funktionale und gestalterische Aspekte und sind dafür zuständig, dass am Ende alles zusammenpasst und das Haus nicht einstürzt. Data Architects sind ihre Pendants in der IT-Landschaft.

Ein Data Architect ist für die Gesamtarchitektur einer Datenplattform verantwortlich – insbesondere dann, wenn komplexere Strukturen aufgebaut werden müssen. Dazu gehören die Definition und Anwendung von Architekturrichtlinien und Methoden sowie der Aufbau von Leitlinien für die Systemarchitektur und die damit verbundenen Einsatzbereiche von entsprechenden Technologien.

Diese komplexeren Strukturen fangen meist da an, wo die klassische BI-Welt aufhört – wo Big Data anfängt: dort, wo Daten in Echtzeit verarbeitet werden müssen, dort, wo unstrukturierte Daten verarbeitet werden und dort, wo hoch frequentierte Daten in kurzer Zeit verarbeitet werden. Beim Einsatz von Sensoren, die in Sekundenabständen Daten erzeugen, entstehen beispielsweise hochfrequentierte Daten. Müssen diese Daten noch in real-time – also sofort, in Echtzeit verarbeitet werden, dann erhöht sich die Komplexität zusätzlich.

Der Einsatz von Algorithmen oder anderer Analyseverfahren, wie etwa im Data-Science-Bereich, erfordert beispielsweise punktuell sehr hohe Rechenpower über einen begrenzten Zeitraum. Hier kommt dann auch die Infrastruktur mit ins Spiel, die den unterschiedlichen Anforderungen der verschiedenen Disziplinen gerecht werden muss. Die Vielfalt der technologischen Möglichkeiten, insbesondere im Cloud-Umfeld, stellen hohe Anforderungen an die Datenarchitektur. Ein Data Architect stellt sicher, dass die geforderten Anwendungsszenarien mit der angedachten Architektur und den dafür vorgesehenen Technologien umgesetzt werden können.

4. Data Engineers

Ein Data Engineer ist ein Spezialist für Datenmanagement insbesondere im Big-Data-Umfeld. Seine Arbeit umfasst die Konzeption und Implementierung von Datenintegrations- und Transformationsprozessen zur Unterstützung datengetriebener Use Cases und Data-Science-Projekte, damit eine bestmögliche Datenvorbereitung ermöglicht wird. In diesem Zusammenhang legen Data Engineers den Fokus auf die Entwicklung von analyseoptimierten Datenarchitekturen.

Data Engineers und Data Scientists arbeiten oft eng zusammen, wobei der Fokus des Data Engineers darauf liegt, Daten aus unterschiedlichsten Quellen und Formaten aufzubereiten, zu organisieren und die erforderlichen Datenpipelines aufzubauen sowie diese zu betreiben. Data Engineers arbeiten somit an der Schnittstelle zwischen Infrastruktur und Datenmanagement, überwachen Datenquellen und steuern Integrationsprozesse sowie die Instanzen, die für die Analyse und Weiterverwendung der generierten Daten zuständig sind.

In dem Sinne ist ein Data Engineer für alle Prozesse rund um das Generieren, Speichern, Pflegen, Aufbereiten, Anreichern und Weitergeben von Daten verantwortlich. Zudem ist für einen Data Engineer von hoher Bedeutung, dass die bereitgestellten Lösungen performant laufen und kontinuierlich optimiert werden. Über ein entsprechendes Monitoring hat ein Data Engineer alles im Blick.

Eng verknüpft mit Big Data, ist die Disziplin des Data Engineering noch vergleichsweise jung und stetig in der Weiterentwicklung. Data Engineers müssen sich daher stets am technischen Fortschritt orientieren, um der Entwicklung nicht hinterherzuhängen und sich in neue Frameworks, Konzepte und Technologien einarbeiten.

Mit Strategie, Roadmap, klaren Visualisierungskonzepten sowie der bewussten Verankerung in der Organisation ans Ziel

Damit datengetriebene Lösungen entstehen und nachhaltig funktionieren, sind weitere Rollen und Disziplinen gefordert und arbeiten mit den Modern Data Workern Hand in Hand. Gerne erzählen wir Ihnen auch dazu mehr. Sprechen Sie einfach Ihren QUNIS-Berater*in an oder schreiben Sie direkt eine E-Mail an team@qunis.de und verraten Sie uns ein wenig mehr zu Ihrer Motivation, Ihren Zielen und Vorhaben. Wir freuen uns auf den Austausch mit Ihnen.

Moderne Data & Analytics-Vorhaben fordern Cloud-Basis-Know-how beim Kunden

Erstellt am: Donnerstag, 13. Mai 2021 von Monika Düsterhöft

Die Cloud bietet umfassende Vorteile für BI und Advanced Analytics

Die Cloud gewinnt immer mehr an Bedeutung. Nicht nur als Möglichkeit für den generellen Aufbau von IT-Architekturen und Business-Modellen, sondern auch ganz konkret bei der Umsetzung von BI- und Advanced-Analytics-Projekten. Denn die Cloud bietet viele unschlagbare Vorteile. Diese liegen zum einen im Bereich der Kostenersparnis und Kostenkontrolle: Bezahlt wird nur, was tatsächlich an Leistung verbraucht wird, die Abrechnung erfolgt nach dem “Pay as you go”-Prinzip, es fallen keine Vorabkosten an und Investitionsausgaben für längerfristige Anlagegüter (CapEx) werden reduziert.

Zum anderen – und dies ist auch besonders für die Abbildung von Advanced-Analytics-Szenarien interessant – erlauben Cloud-Architekturen eine bedarfsgerechte Skalierung und damit die schnelle Bereitstellung passgenauer Infrastrukturen. Dank tiefer Integration in DevOps-Prozesse lassen sich zudem Entwicklungszyklen verkürzen, darüber hinaus können robuste Architekturen mit zum Beispiel Redundanzen in mehreren Regionen und Rechenzentren auf einfache Art und Weise sowie mit äußerst überschaubarem Administrationsaufwand realisiert werden. Zunehmend mehr Unternehmen erkennen diese Vorteile und sehen, was mit Cloud-Architekturen gerade auch für BI- und Analytics-Vorhaben möglich ist.

Die Stimmung ist positiv, birgt jedoch auch Herausforderungen 

Wir bei QUNIS erleben es täglich in unseren Projekten. So gut wie all unsere Kunden haben sich bereits mit dem Thema Cloud beschäftigt – und sei es nur gedanklich. Sie sind offener denn je für den Einsatz der neuen Technologien und Use Cases, bei denen Big Data oder Streaming Data in die Analysen miteinbezogen werden, sind in der Zwischenzeit zur Realität geworden. Hinzu kommt, dass BI- und Analytics-Projekte oftmals aufgrund ihrer Spezifika als „Leuchtturm“-Initiativen gelten. Und nicht selten handelt es sich dabei auch um das erste Projekt im Unternehmen, das ganz bewusst in der Cloud umgesetzt werden soll.

Eine Herausforderung, die sich daraus ergibt und die wir aktuell beobachten: Fragen zum Cloud-Konzept und damit zu Aspekten wie Networking, Monitoring, Deployment, Governance und Compliance, aber auch zur Technologie selbst, werden in BI- und Analytics-Projekten oft zum allerersten Mal gestellt und müssen erst grundlegend geklärt werden. Ein großer Teil der Projektaufwände entfällt also auf Themen, die nicht Kern des eigentlichen Projektes sind. Und Aspekte wie Cloud-Einarbeitung, -Know-how-Transfer und -Konzept-Erstellung wirken sich bemerkbar auf Timeline, Budget und Qualität des eigentlichen Projektes aus, da sich  „Nebenkriegsschauplätze“ ausbilden, die nicht originär mit den fachlichen Anforderungen in Zusammenhang stehen.

Wir versorgen Projekt-Teams mit notwendigem Cloud-Know-how

Die Erkenntnis, dass das notwendige Cloud-Basis-Know-how in Unternehmen oft nicht ausreichend vorhanden ist, aber für die zielgerichtete Umsetzung von BI- und Analytics-Projekten immer essenzieller und dringender notwendig wird, hat uns dazu bewogen, ein entsprechend fokussiertes Schulungsprogramm zu entwickeln:

Mit der dreitägigen und aus sechs Modulen bestehenden Schulung „Modern Data Management & Analytics on Microsoft Azure“ wollen wir Unternehmen, die eine Lösung in der Cloud planen, dabei unterstützen, sich das geforderte Cloud-Know-how bereits vor Projektbeginn anzueignen. Zugleich regen wir im Rahmen der Schulung dazu an, sich Gedanken über den Cloud-Reifegrad des eigenen Unternehmens zu machen. So möchten wir unsere Teilnehmer dazu befähigen, die notwendigen Themen zu identifizieren und intern zu adressieren.

Denn eine moderne, ganzheitliche BI-Lösung in der Cloud besteht aus deutlich mehr Komponenten als ein klassisches Data Warehouse (DWH) On-Premise. Die Auswahl der richtigen Komponenten und der Aufbau einer ganzheitlichen Architektur stellen dabei eine besondere Herausforderung dar. In unserer Schulung stellen wir dafür Azure-Komponenten aus verschiedenen Bereichen vor, vergleichen ähnliche Angebote miteinander und ordnen die einzelnen Komponenten den diversen Bereichen einer BI-Lösung zu.

Facettenreiche Schulungsinhalte geben fundierten Überblick zu Azure

Im Rahmen der Schulung gehen wir auf Komponenten für eine relationale DWH-Architektur in der Cloud genauso ein wie auf die Komponenten für Big-Data- und Streaming-Use-Cases und zeigen auf, wie sie in eine klassische DWH-Architektur integriert werden können, um diese sinnvoll zu ergänzen.

Wir befassen uns einerseits mit Möglichkeiten des „Lift & Shift“, bei denen bestehende Applikationen und Pipelines direkt in die Cloud übertragen werden können. Andererseits diskutieren wir auch Cloud-optimierte, also „Cloud-Optimized“-Konzepte, die verstärkt Cloud-native Funktionen wie “Serverless Computing“ und „Platform as a Service“ verwenden. Teilnehmer erhalten eine Übersicht der skalierbaren Cloud-Komponenten zur Umsetzung des Modern DWH in Azure. Die Schwerpunkte liegen auf

  • Extraktion und Datenflusssteuerung (Azure Data Factory, Event Hub – Kafka der Cloud)
  • Transformation und Compute (Azure Databricks – Apache Spark, Azure Functions – Serverless Computing, “Code First”, Azure Logic Apps – Serveless Computing, “Design First”, Azure SSIS integration runtime)
  • Speicherung und Storage (Blob und File-Storage, Azure Data Lake Storage Gen2, Azure Synapse Analytics)
  • Analyse und Bereitstellung der Daten (Polybase – „Logical Data Warehouse“) und Azure Analysis Services (Power BI).

Reine Data-Science-Anforderungen und -Projekte lassen sich zudem in jeder Größenordnung sehr gut und auch vollständig in der Cloud abbilden. Gerade die einfache und bedarfsgenaue Skalierbarkeit von Rechnerressourcen ist dabei ein immenser Vorteil gegenüber einer On-Premise-Lösung. In unserer Schulung stellen wir die verschiedenen Möglichkeiten zur Durchführung von Advanced-Analytics-Use-Cases vor.

  • So erlaubt die umfassende grafische Analytics-Umgebung „Azure Machine Learning Studio“, komplexeste Algorithmen vollständig ohne eigene Programmierung zur Anwendung zu bringen. Die gute Integration der mächtigen und skalierbaren Databricks-Umgebung ermöglicht es, analytische Modelle auf Big Data mit Apache Spark anzuwenden. Deshalb wird das System oft als Schweizer Taschenmesser der Big-Data-Datenverarbeitung bezeichnet.
  • Bei Apache Spark handelt es sich um ein einheitliches In-Memory-Big-Data-System, das bestens für die performante und parallele Verarbeitung von enormen Datenmengen geeignet ist. Apache Spark verarbeitet die Daten im Arbeitsspeicher und versucht das Schreiben auf eine Festplatte zu vermeiden. Databricks basiert auf den in Apache Spark verfügbaren Funktionen und übernimmt die komplette Verwaltung des Spark-Clusters.
  • Daneben lernen Sie die „Cognitive Services“ kennen mit fertig trainierten Anwendungen von Bild- über Sprach- oder Formularerkennung, die als Komponente in Ihre Use-Cases integriert werden können. Und wir stellen Ihnen die vorkonfigurierte „Data Science Virtual Machine“ bereit als Allzweckwerkzeug für eine kurzfristig verfügbare Entwicklungsumgebung.

Auch für die Operationalisierung von Use-Cases bietet Ihnen die Cloud vielfältige Möglichkeiten, um mit bereits geringem Konfigurationsaufwand zum produktiven Setup zu gelangen ¬– egal, ob Sie trainierte Modelle als Pipeline im Azure Machine Learning Studio anwenden und per API bereitstellen oder eigene containerbasierte Anwendungen im Kubernetes Cluster orchestrieren.

Kompaktes Wissen und Use Cases aus der Praxis

Mit dem QUNIS-Schulungsangebot „Modern Data Management & Analytics on Microsoft Azure“ ist es unser Ziel, unsere Teilnehmer bestmöglich auf die ersten Schritte mit der Cloud-Technologie Microsoft Azure im eigenen Unternehmen vorzubereiten. Wir veranschaulichen alle Themen durch Use Cases aus der Praxis und vermitteln in Live-Demos einen tieferen Einblick in die verschiedenen Technologien.

Nach der Schulung sind Sie ausgestattet mit einer breiten Wissensgrundlage und fähig, fundierte Cloud-Entscheidungen für Ihr Projekt treffen.

Mein Tipp: Hier finden Sie eine detaillierte Beschreibung der Schulung und aktuelle Termine. Sollten Sie eine individuelle Schulung für Ihr Unternehmen wünschen, sprechen Sie uns einfach an, wir beraten Sie gerne und unterbreiten Ihnen ein entsprechend auf Ihre Bedarfe zugeschnittenes Angebot. KONTAKT

Fachkonzeption… muss das sein?

Erstellt am: Mittwoch, 7. April 2021 von Monika Düsterhöft

Die Vielfalt an technischen Möglichkeiten sowie das Streben nach pragmatisch schnellen Ergebnissen verleiten gerne dazu, die Fachkonzeption zu vergessen. Sollten Sie aber nicht!

Bei der Umsetzung von Data & Analytics-Projekten befinden sich Organisationen häufig im Spannungsfeld zwischen einerseits einer hohen Erwartungshaltung der potenziellen Anwender, geweckt durch die Vielzahl an technischen Möglichkeiten und der Leistungsfähigkeit am Markt erhältlicher Produkte, und andererseits dem eigenen Bestreben, Projekte schnell zum Erfolg zu führen.

Die erfolgsentscheidende fachliche Konzeption und Definition der umzusetzenden Anforderungen kommt dabei oftmals zu kurz und Lösungen werden zu pragmatisch realisiert. Damit die wichtige Phase der fachlichen Konzeption nicht unter den Tisch und ihr Fehlen Ihnen nachträglich vor die Füße fällt, habe ich für Sie, basierend auf unserer Projekterfahrung, eine Liste mit hilfreichen Hinweisen zusammengestellt.

Die folgenden acht Punkte geben Ihnen eine Orientierung, wie Sie beim Erstellen einer Fachkonzeption vorgehen und auf was Sie achten sollten.

1. Anwendungsfälle nutzenorientiert definieren

Anwendungsfälle benötigen eine strukturierte Beschreibung und klare Zielsetzung. Neben einer fachlichen Beschreibung der fachlichen Anforderungen, den Voraussetzungen für die Umsetzung sowie die benötigten Daten und deren Herkunft, müssen vor allem die Ziele inklusive der damit verbundenen Nutzenfaktoren beschrieben sein und diesen die erwarteten Aufwände gegenübergestellt werden.

Somit wird die Priorisierung von Use Cases erheblich unterstützt bzw. erleichtert sowie die Basis geschaffen für eine spätere Analyse der Nachhaltigkeit bzw. des tatsächlich erreichten Business Nutzens.

2. Umfang von Anwendungsfällen für Data & Analytics festlegen

Eine Zielrichtung für Data & Analytics-Initiativen ist essenziell, um wichtige Basisparameter und Fragestellung für das Projekt zu definieren. Von daher sollten die geplanten Einsatzbereiche und angestrebten Lösungen abgesteckt, grob priorisiert und auf einer Roadmap festgehalten werden.

3. Zentrale Themen ganzheitlich betrachten

Beim Aufbau einer Data & Analytics-Landschaft und der Umsetzung der verschiedenen Szenarien gibt es übergreifende Themengebiete mit zentraler Bedeutung, die einheitlich und zu Beginn des ersten Anwendungsfalles für alle weiteren mit definiert werden sollten.

Dazu zählen unter anderem:

  • Infrastrukturfragestellungen
  • Security- und Zugriffskonzepte
  • Anforderungen an die Datenharmonisierung
  • Datenqualität und -hoheit in Abstimmung mit den Quellsystemen

4. Mit kleinen Schritten starten

Erste Anwendungsfälle sollten keinesfalls zu groß dimensioniert werden. Gerade für den Einstieg in Data & Analytics-Projekte ist es wichtig, Pilotprojekte überschaubar zu definieren, damit Ergebnisse und damit verbundene Erfolge sichtbar bzw. Nutzenvorteile in der Organisation spürbar werden. Nicht zu unterschätzen ist neben den ersten spürbaren Ergebnissen auch eine Lernkurve, die das gesamte involvierte Team durchschreitet.

5. Fachliche Feinkonzeption bildet das stabile Fundament

Sobald die Roadmap für Anwendungsfälle festgelegt ist, müssen die zuerst priorisierten fachlich im Detail spezifiziert werden. Hier sollte immer von den Anforderungen der Anwender ausgegangen werden. Dies kann z.B. bei einem Reporting Use Case die Visualisierung der Daten, Definition von Kennzahlen und deren Berechnung, benötigte Dimensionen sowie das zugrunde legende fachliche Datenmodell sein.

Diese fachlichen Anforderungen gilt es dann in ein technisches Konzept für die Realisierung zu transformieren und die erforderlichen Rahmenparameter für die Implementierung festzulegen, der ein zentrales technisches Datenmodell mit einer Anbindung der notwendigen Quellsysteme zugrunde liegt.

6. Aufwände realistisch und verlässlich abschätzen

Auf Basis der Feinkonzeption kann eine valide und möglichst realitätsnahe Schätzung der Aufwände für die Implementierung erfolgen. Somit kann abschließend bewertet werden, wie viel Aufwand erforderlich ist, um den gegenüberstehenden Business-Nutzen zu erzielen.

7. Management Freigabe einholen

Für die umzusetzenden Use Cases sollte neben der Roadmap auch eine Freigabe der Budgets für die geplanten Anwendungsfällen durch das verantwortliche Management erfolgen.

8. Data & Analytics-Projekte effizient steuern

Um eine möglichst effiziente und zielgerichtete Projektsteuerung zu erreichen, sollten für die verschiedenen Projektphasen die am besten geeigneten Methoden angewendet werden.

  • Die Erfahrung zeigt, dass Best Practices für Analytics-Projekte eine Verzahnung von klassischen und agilen Methoden erfordern.
  • Übergreifende Themen wie beispielsweise die Definition einer Strategie und Roadmap, Konzeption und Priorisierung der Umsetzungsplanung werden eher klassisch gesteuert.
  • Die technische Umsetzung erfordert agile Methoden. Spezifizierte Anwendungsfälle werden gemäß der Umsetzungsplanung in die agile Projektsteuerung übergeben und dann iterativ umgesetzt.

Zusammenfassend kann man festhalten, dass neben einer strategischen Planung und Ausrichtung einer Data & Analytics-Initiative die Aufteilung des Gesamtvorhabens in einzelne Anwendungsfälle und deren Konzeption erfolgsentscheidend ist, ohne das große Ganze aus dem Blick zu verlieren und einen stetigen Projektfortschritt und damit verbundene Erfolge zu erreichen.

Mein Tipp: Gerne informiere ich Sie, wie wir diese acht Schritte gemeinsam mit Ihnen gehen. Sprechen Sie mich einfach an. Sie finden mich auf LinkedIn oder schreiben Sie mir hier, ich melde mich gerne bei Ihnen. KONTAKT