Archiv für die Kategorie Artificial Intelligence (AI)

AI, Advanced Analytics, Big Data und ihre Bedeutung für die BI

Erstellt am: Mittwoch, 1. Mai 2019 von Monika Düsterhöft

Artificial Intelligence (AI) nutzt Machine Learning

Artificial Intelligence ist ein Begriff, der sofort sehr stark mit Innovation assoziiert wird und gleichermaßen eine große Faszination wie diffuse Ängste auslösen kann, obwohl oder vielleicht auch gerade weil es bis dato keine generell akzeptierte oder allgemeingültige Definition dessen gibt.

Sprach Richard Bellman 1978 beispielsweise von „der Automatisierung von Aktivitäten, die wir mit menschlichem Denken assoziieren, also dem Fällen von Entscheidungen, Problemlösung, Lernen …“, definierte Patrick Henry Winston 1992 die AI als „das Studium von Berechnungen, die es möglich machen, wahrzunehmen, schlusszufolgern und zu agieren“. Eine weitere Definition aus dem Jahre 1990 von Ray Kurzweil trifft es ebenso im Kern: „Die Kunst, Maschinen zu entwickeln, die Funktionen ausüben, welche Intelligenz erfordern, wenn sie vom Menschen ausgeführt werden.“

Ein Großteil der Methoden, mit denen Artificial Intelligence (AI) realisiert wird, fasst man unter dem Oberbegriff des Machine Learning (ML) zusammen. Maschinelles Lernen ist sehr stark der Art nachempfunden, wie wir Menschen lernen – so werden der Maschine in immer wiederkehrenden Schleifen Beispiele vorgelegt, anhand derer ein Sachverhalt gelernt wird, nur um das Gelernte anschließend verallgemeinern zu können.

Beispielsweise zeigt man der Maschine zahlreiche verschiedene Bilder von Katzen, auf dass sie danach das Prinzip „Katze“ verinnerlicht hat und solche auch auf Bildern erkennen kann, die sie vorher noch nicht zu sehen bekommen hat. Wie auch beim Menschen wird beim maschinellen Lernen nach der Lernmethode unterschieden – so unterscheiden wir zwischen dem überwachten Lernen (Supervised Learning), also dem Lernen anhand vordefinierter Beispiele, dem unüberwachten Lernen (Unsupervised Learning), was das automatische Erkennen von Mustern oder Merkmalen zum Inhalt hat, sowie dem bestärkenden Lernen (Reinforcement Learning), das auf dem Prinzip des Belohnens und Bestrafens basiert.

Advanced Analytics nutzt AI

Bei der Advanced Analytics kommen maschinelles Lernen sowie andere mathematisch-statistische Verfahren und Modelle zur Anwendung. Hierunter verstehen wir das methodische Analysieren und Interpretieren von Daten beliebiger Strukturen mit Ziel einer möglichst automatischen Erkennung von Bedeutungen, Mustern und Zusammenhängen und/oder der Prognose bestimmter Eigenschaften oder Kennzahlen.

Die Advanced Analytics kann somit auch als nächste Evolutionsstufe der Business Intelligence gelten. Während die traditionelle Business Intelligence den Blick vorrangig in die Vergangenheit richtet, um den Manager zu ermächtigen, die richtigen Rückschlüsse und bestmöglichen Entscheidungen für die künftige Ausrichtung des Unternehmens zu treffen, versucht die Advanced Analytics, diesen Prozess weitestgehend der Maschine zu überlassen, also zu automatisieren und selbst in die Zukunft zu schauen. Dies erfolgt in zwei aufeinanderfolgenden Schritten – im ersten werden durch die Predictive Analytics Vorhersagen über zu erwartende Entwicklungen gemacht, im zweiten zeigt die Prescriptive Analytics potenzielle Maßnahmen auf, gezielt wünschenswerte Ergebnisse zu erreichen.

Big Data erweitert BI

Wie auch in des Managers Entscheidungsprozess weitere relevante Zusatzinformationen neben den reinen Geschäftsergebnissen einfließen, beispielsweise Wetterdaten, geolokale Informationen oder Markttrends, so ist dies analog gültig für die Advanced Analytics. So beschafft man sich neben den strukturierten Daten aus ERP-, CRM- oder anderen Systemen wie beispielsweise dem zentralen Data Warehouse weitere Informationsquellen, die in die Analytics mit eingebunden werden. Dies können nicht selten Datenbestände sein, die man im Allgemeinen dem Begriff Big Data zuordnet.

Konkret bezeichnet Big Data eine bestimmte Art und Beschaffenheit von Daten plus dazu passende Methoden und Technologien für die hochskalierbare Erfassung, Speicherung und Analyse. Gerne wird in dem Zusammenhang auch von den drei Vs gesprochen:

  • Variety oder die Datenvielfalt: Immer mehr Daten liegen in unstrukturierter und semistrukturierter Form vor, beispielsweise aus den sozialen Netzwerken oder auch Geräten und Sensoren.
  • Volume oder die Datenmenge: Immer größere Datenvolumina werden angesammelt – Größenordnungen von mehreren Petabytes sind keine Seltenheit mehr.
  • Velocity oder die Geschwindigkeit: Riesige Datenmengen müssen immer schneller ausgewertet werden, bis hin zur Echtzeit. Die Verarbeitungsgeschwindigkeit muss mit dem wachsenden Datenvolumen Schritt halten.

Bezieht man also neben strukturierten Daten auch unstrukturierte, polystrukturierte und Massendaten, idealerweise realtime in die Analyse mit ein und bedient sich dafür unter anderem der Methoden des Machine Learnings, erweitert man die BI durch Big Data und den Einsatz von AI hin zur Advanced Analytics.

Viele spannende Informationen warten darauf, auf diese Art von Ihnen entdeckt zu werden!

Mein Tipp: Sie wollen den Machine Learning Algorithmen auf den Grund gehen? Holen Sie sich das kostenfreie QUNIS Machine Learning Cheat Sheet als PDF, im Pocket-Format oder als Poster für die Wand. Hier direkt Cheat Sheet holen.

CDS – der Citizen Data Scientist als Weg aus dem Analytics-Ressourcen-Engpass

Erstellt am: Montag, 18. März 2019 von Monika Düsterhöft

Für die Umsetzung von Advanced-Analytics-Vorhaben ist eine durchdachte Datenstrategie unverzichtbar. Sie regelt alle Fragen rund um die technische Systemintegration, die Data Governance und das unternehmensweite Data Quality Management (DQM).

Darüber hinaus gibt es neue fachliche Anforderungen und Aufgabenfelder wie die Definition komplexer Algorithmen für das Heben wirtschaftlicher Potenziale oder das Deployment der entstandenen Data-Science-Services. Der Data Scientist nimmt bei diesen Aufgaben eine der zentralen Schlüsselrollen ein. 

Neue Advanced-Analytics-Aufgaben benötigen Data Scientisten mit vielfältigen mathematischen, technischen und prozessualen Skills.

Mit seinem tiefen Einblick in die Fachbereiche formuliert der Data Scientist die Projektanforderungen, kümmert sich um die Themen Datenmanagement und Data Quality Management unter Beachtung der Data Governance und übernimmt die Definition von Datenmodellen und Algorithmen. Er hat tiefe mathematisch-statistische Kenntnisse, kann programmieren, kennt sich mit Datenschutz und sonstigen Compliance-Regeln aus und verfügt über umfangreiches Business-Know-how.

Kurzum, der Data Scientist ist ein Allrounder mit viel Spezialwissen und umfassender Erfahrung. Kein Wunder daher, dass diese Fachkräfte äußerst gefragt und ziemlich rar sind und dass viele Digitalisierungsvorhaben schlichtweg wegen dieser fehlenden Skills und Ressourcen stagnieren.

Arbeitsteilung, Tools und das Konzept des Citizen Data Scientist (CDS) können Abhilfe aus dem Ressourcen-Dilemma schaffen.

Ein Ansatzpunkt ist die Entlastung des Data Scientists von Routinen im Datenmanagement. Speziell bei der Datenakquisition können technisch versierte Experten, die sogenannten Data Engineers, den Data Scientist gut unterstützen. Ein zweiter Ansatzpunkt, der sich derzeit am Markt für analytische Applikationen abzeichnet, ist die zunehmende Verlagerung von analytischem Know-how in die Systemwelt.

Etablierte BI-Anbieter beispielsweise erweitern ihr Portfolio um Datenvisualisierungstools, die Visual Analytics ohne Programmieraufwand unterstützen. Per Drag-and-drop können hier Datenströme hinzugefügt, verbunden und analysiert werden, und im Hintergrund laufen die neuesten Algorithmen für die fortgeschrittene Datenanalyse. Auch die Branche der AI-Spezialisten liefert unter der Bezeichnung „Augmented Analytics“ anwenderorientierte Werkzeuge, die Funktionen zur Automatisierung der Datenaufbereitung, Erkenntnisfindung und Datenanalyse enthalten.

Mithilfe solcher anwenderorientierten Frontends können geübte BI Power User, die ein mathematisch-statistisches Grundverständnis sowie Interesse an Analytics mitbringen, bestimmte Aufgabenfelder der Data Science übernehmen und so neben den Data Engineers ebenfalls ihren Teil dazu beitragen, das begehrte Skillset des Data Scientists zu erfüllen. Es kristallisiert sich ein neues Rollenbild heraus. Wir sprechen vom Citizen Data Scientist (CDS), der mit den richtigen Tools in der Lage ist, analytische Aufgaben auszuführen und auch selbst Modelle zu erstellen, die fortgeschrittene Analysen, Vorhersagen und präskriptive Funktionen enthalten.

Die Ausbildung von CDS ist ein aussichtsreicher Ansatzpunkt, um analytische Kompetenzen im Unternehmen aufzubauen.

Im Grunde kann jeder Fachanwender oder IT-Spezialist, der ein Grundverständnis für Datenarbeit sowie statistisches und mathematisches Know-how mitbringt, den Umgang mit Self-Service-Data-Science-Werkzeugen erlernen. Besonders geeignet sind BI Power User, die lernbereit und neugierig darauf sind, Data Science und vorhersagende Algorithmen für ihre Geschäftsprozesse zu erkunden.

Im Gegensatz zum klassischen BI-Anwender, der auf der Basis vorgefertigter Daten-Cubes arbeitet, bewegt sich der CDS dabei jedoch auch auf der Ebene der Rohdaten, um explorativ neue Erkenntnisse zu generieren. Weitere aussichtsreiche Kandidaten für Citizen Data Science sind Ingenieure mit Hintergrundwissen aus Mathematik, Statistik und Modellierung.

Die neuen Data-Science-Experten benötigen Rückendeckung und Unterstützung für ihr Tätigkeitsfeld.

Für ihre Aufgabenfelder bringen unternehmensintern ausgebildete CDS neben ihren analytischen Fähigkeiten auch ihr bereits vorhandenes Markt- und Branchen-Know-how sowie das Wissen um interne Prozessen in die Datenanalysen mit ein. Ein wesentlicher und nicht zu unterschätzender Vorteil. Sie brauchen aber auch Rückendeckung durch das Management sowie Unterstützung durch die interne IT.

CDS benötigen mehr Daten, zum Teil auch mehr ungefilterte Daten und sie brauchen IT-Umgebungen, in denen sie mithilfe aktueller Tools und Technologien experimentieren und Prototypen von Modellen und Applikationen bauen können. Zudem müssen sie den zeitlichen Freiraum für ihre Datenrecherchen erhalten.

Ein versierter Partner an der Seite, der neben der expliziten Data-Science-Expertise auch Erfahrung aus anderen Projekten mit einbringt und die neuen CDS auf ihrem Weg begleitet, ist eine weitere äußerst wertvolle Hilfe und ein wichtiger Baustein für den Erfolg einer Advanced-Analytics-Initiative.

Wenn die Rahmenbedingungen stimmen, können sich Unternehmen auf diese Weise pragmatisch wertvolle Personalressourcen aus den eigenen Reihen erschließen und richtig Schubkraft in ihre Digitalisierungsprojekte bringen.

Mein Tipp: Besuchen Sie das CA-Seminar – Deep Dive Advanced Analytics – Machine Learning in der Praxis mit „R“ – und lernen Sie das Tagesgeschäft eines Data Scientist besser kennen. Das Seminar wird von und mit QUNIS Experten durchgeführt und findet im Rahmen der Kooperation mit der CA Controller Akademie und des Ausbildungsprogramms zum Information Manager statt. Mehr zu allen CA-Seminaren finden Sie hier.

Data-Science-Services einfach und stabil bereitstellen mit dem AHUB Deployment Framework.

Data Science liebt Docker

Erstellt am: Freitag, 1. März 2019 von Monika Düsterhöft

Moderne Verfahren zur Datenanalyse dringen immer mehr in den Unternehmensalltag ein. Als Experte für das Erkennen von Strukturen in großen Datentöpfen und daraus abzuleitenden Vorhersagen spielt der Data Scientist eine bedeutende Rolle. Er leitet und begleitet die Entwicklung des Data-Science-Services von der Modellierung bis zur Bereitstellung an die Nutzer und hat es dabei typischerweise mit folgenden Herausforderungen zu tun:

Erstellung eines Modells in R oder Python inklusive einer REST API für webbasierte Aufrufe zum Modelltraining und Scoring

Im ersten Schritt, der explorativen Phase, befasst sich der Data Scientist mit dem Erstellen eines Modells mit Hilfe von Skripten. Diese trainieren das Modell mit historischen Daten und rufen Vorhersagen auf Basis neuer Datensätze ab. Die Umsetzung der Skripte erfolgt meist in Umgebungen wie R oder Python, die sich dank ihrer umfangreichen Bibliotheken aus dem Bereich der Statistik und des Machine Learning sowie einer sehr aktiven Entwickler-Community zum Quasi-Standard erhoben haben.

Für die Modell-Findung arbeitet der Data Scientist gerne in einer „Sandkasten-Umgebung“. Das kann eine virtuelle Maschine, ein lokaler Rechner oder auch ein Cloud-gehostetes „Notebook“ mit browserbasierter Entwicklungsumgebung sein. Das fertige Modell sollte über eine webbasierte Schnittstelle (REST-API) für andere Services ansprechbar sein. Hierfür haben sich die Bibliotheken Flask (Python) und Plumber (R) bewährt.

Definition der Code-Abhängigkeiten und Aufbau eines Images über Dockerfiles sowie Start der Container auf einem Cloud- oder On-Premise-Server

Ist ein Vorhersagemodell mit hoher Güte entstanden, gilt es dieses dem Nutzer zur Verfügung zu stellen. Wir sprechen vom Deployment des Data-Science-Services. Für diesen Zweck hat sich in den letzten Jahren die Docker-Container-Technologie als extrem flexibles und einfach handhabbares Werkzeug erwiesen. Denn Docker-Container lassen sich durch eine simple Konfigurationsdatei (das Dockerfile) in Minutenschnelle bauen und auf einem beliebigen System zur Ausführung bringen. Es gilt das große Docker-Versprechen: Wenn ein Container im Sandkasten läuft, lässt er sich auf jeder anderen Infrastruktur gleichermaßen betreiben.

Ein Container ist dabei ein gekapselter Prozess in dem sowohl der auszuführende Code, als auch alle dafür benötigten Abhängigkeiten (Laufzeitumgebung, Bibliotheken) untergebracht sind. Die Hardware-Ressourcen wie CPU und RAM werden dem Container vom Docker-Daemon, der auf dem Host-Betriebssystem läuft, zugewiesen. Container lassen sich so als ressourcenschonendere Variante einer dedizierten virtuellen Maschine sehen, da im Gegensatz zur VM nicht für jeden gekapselten Prozess ein eigenes Betriebssystem ausgeführt werden muss.

Fragestellungen rund um GUI, Sicherheit, Betrieb bedenken und lösen

Wer den Deployment-Prozess für einen Data-Science-Service einmal durchlaufen hat, wird feststellen, dass neben der reinen Data Science auch noch folgende Fragestellungen bedacht werden müssen:

  • Wie kann ein technisch weniger versierter Nutzer die Modellvorhersage abrufen? Welche GUI braucht er?
  • Wie kann der Zugriff auf das Modell nur berechtigten Personen erlaubt werden? Welche Sicherheitsthemen sind zu beachten?
  • Wie ist der fortdauernde Betrieb und die Nachvollziehbarkeit im Fehlerfall gewährleistet? Wie ist ein stabiler Betrieb und Governance möglich?

Da diese übergeordneten Fragestellungen bei jedem Deployment auftauchen, bietet es sich an, diese in standardisierter Form zu adressieren. Aus dieser Überlegung heraus ist bei QUNIS im Rahmen eines Forschungsprojektes das AHUB Deployment Framework entstanden.

Schnelle und stabile Bereitstellung mit Docker-basiertem Deployment-Framework

AHUB ist Docker-basiert und bietet eine orchestrierte Container-Landschaft aus standardisierten Modulen, die sich den obigen Fragestellungen annehmen. Mithilfe des Frameworks lassen sich beliebig viele analytische Teil-Applikationen mit minimalem Aufwand von der Sandbox-Umgebung in ein professionelles, produktives Setup und schlussendlich in einen stabilen Betrieb überführen.

Das ganze Framework ist als Open-Source-Projekt konzipiert. Der Quellcode und eine Demo-Applikation stehen über GitHub für jedermann zur Verfügung. Eine wirkliche Wohltat für jeden Data Scientisten. DIREKT ZU AHUB AUF GITHUB

Mehr zu AHUB erfahren.

Softbots als nächste Evolutionsstufe in der Anwendungsentwicklung

Erstellt am: Freitag, 24. August 2018 von Malte Hoffmann

Ein Chat- oder noch besser Softbot – je nachdem, wie leistungsfähig sein Kernprogramm ist – sehe ich als beste Idee einer möglichen Weiterentwicklung des klassischen Anwendungsprogramms, die mir seit langem begegnet ist. Nennen wir diese Konstruktion im Nachfolgenden einfach Bot, um die Sache nicht unnötig zu verkomplizieren.

Digitaler bester Freund, Kollege und Ratgeber

Ein Bot kann so vieles sein – schlichte Frage-/Antwortmaschine, leicht und effizient bedienbarer FAQ-Service, umfassendes und weltumspannendes Auskunftsbüro, unbürokratisches, sympathisches Helferlein bei der Datenerfassung oder effizientes Hilfsinstrument bei Recherchearbeiten. Der Einsatz geht bis hin zum digitalen intelligenten Assistenten, der on Demand entweder BI-Analysen interaktiv durchführt oder hochkomplexe KI-Algorithmen zur Ausführung bringt oder mir ganz schlicht über einen Internetservice eine Pizza bestellt, wenn mich der kleine Hunger packt.

Die möglichen Anwendungsfälle sind von unbegrenzter Mannigfaltigkeit. Vor allem aber ist ein Bot ein treuer, intelligenter – und wenn der Entwickler sich ein wenig Mühe mit dem Charakter gibt auch recht liebenswürdiger – vor allem aber nimmermüder hilfreicher Geselle, der mich, sei es privat oder auch und ganz explizit geschäftlich, angenehm und effizient unterstützend durch meinen Tag begleiten kann.

Funktion und Technik kurz erklärt

Um zu verstehen, wie so ein Bot technisch funktioniert, befassen wir uns am besten mit den Komponenten, aus denen er besteht.

Da haben wir zum einen die Schnittstellen zu seiner Umwelt – in der Grafik links und rechts außen dargestellt. Hier sitzt der Mensch, der mit dem Bot in Interaktion tritt und zwar üblicherweise mittels Text – also Tippen – oder Sprache – also verbal.

Kommt die Sprachsteuerung zum Einsatz, braucht es dafür auf beiden Seiten jedenfalls die dafür vorgesehenen Künstliche-Intelligenz (KI)-Bausteine – zum einen für die automatische Spracherkennung, also die Umwandlung des gesprochenen Wortes in maschinenlesbaren Text – und  zum anderen für die Sprachsynthese, also die Umwandlung des textbasierten Maschinenoutputs in eine künstliche Sprechstimme.

Beide Verfahren basieren heutzutage immer mehr auf Deep Learning Methoden, die einen sehr positiven Einfluss auf die Qualität des Ergebnisses haben – auf der einen Seite die Minimierung der Fehlerrate bei der Spracherkennung, auf der anderen Seite die Verbesserung der Natürlichkeit der Sprachmelodie.

Die Interpretation des Gesagten

Nachdem nun also die Benutzereingabe in maschinenlesbarer Form vorliegt, folgt oftmals als optionale Komponente ein weiterer KI-Baustein, der auf den ersten Blick eventuell gar nicht weiter als solcher auffällt, aber dennoch eine sehr essentielle Funktionalität darstellt. Ich spreche hier von der Notwendigkeit der Interpretation des Gesagten, also der Feststellung des besonderen Wunsches, der Intention des Anwenders.

Wie Sie vielleicht schon selbst beim Chatten mit einem Bot bemerkt haben, können Sie in mehr oder weniger ganzen, auch umgangssprachlichen Sätzen mit ihm kommunizieren. Weder ist es nötig, sich bestimmte Sprachbefehle zu merken oder aber verabredete Wortlaute zu verwenden; selbst kleine Tippfehler werden großzügig toleriert.

Wie funktioniert das? Nun, hier kommt eine weitere Disziplin der KI zum Einsatz, das Natural Language Processing (NLP). Es übernimmt die Interpretation des Anwenderwunsches.

Zu guter Letzt, sozusagen im Zentrum des Geschehens befindet sich dann das Kernprogramm. Hier passiert quasi die Fleißarbeit, alle Programmschritte, die für die Erfüllung des Anwenderwunsches vollzogen werden müssen. Und da befinden wir uns in der traditionellen, wenngleich auch sehr stark dialogorientierten Anwendungsentwicklung, die aber auch hier ganz stark über den Einbezug von weiteren, individuellen KI-Komponenten intelligent gemacht werden kann.

Ein Wort noch zur Sprachsteuerung

Diejenigen Bots, die Stand heute vorrangig durch direkte Ansprache funktionieren, sind beispielsweise Alexa von Amazon, Google Home, Siri von Apple oder Cortana von Microsoft, um jetzt nur ein paar bekannte Vertreter zu nennen. Wir haben uns mittlerweile mit dem permanenten Lauschangriff seitens dieser treuen Gefährten arrangiert, ist es doch zu bequem, auf diese Weise mit den gewünschten Funktionen zu korrespondieren.

Was jedoch im privaten Umfeld so angenehm anmutet, gilt – noch? – nicht gleichermaßen für das professionelle Umfeld. Zumindest wird es heutzutage bisher eher nicht toleriert, wenn im Großraumbüro der Kollege nebenan permanent mit seinem Computer spricht, um seine Anweisungen durchzugeben – dies stößt noch zu sehr auf Irritationen, vergleichbar mit einem Sitznachbarn im Bus, der mit seinem Bekannten lautstark mobil telefoniert.

Weder schöner Traum noch ferne Zukunftsvision

Wenn Sie jetzt anhand dieser Detail-Informationen den Eindruck gewonnen haben sollten, die Entwicklung eines Bots sei sehr aufwändig und kompliziert, so stimmt das nur bedingt, denn mittlerweile gibt es dafür umfassende Hilfestellung. So hat beispielsweise Microsoft mit seinem Bot Framework eine für die sofortige Nutzbarkeit bereitstehende Rahmenhandlung geschaffen, mittels derer man einen einfachen Bot binnen weniger Minuten zum Laufen bringen kann.

Für die notwendigen KI-Funktionalitäten stehen fertig nutzbare sogenannte kognitive Services zur Verfügung, so beispielsweise die Applikation LUIS – Language Understanding Intelligent System – eine Applikation für die Interpretation der Anwenderwünsche anhand der eingegebenen Anweisungen, die ich ganz nach den umzusetzenden Funktionalitäten gestalten kann. Hier definiere ich die zu realisierenden Intentionen und hinterlege diese mit dazu passenden Redewendungen, auf die ich anschließend einen Machine Learning Algorithmus trainiere, so dass auch sinnverwandte Formulierungen verstanden werden.

So kann sich der Entwickler voll und ganz auf die Umsetzung der Kernfunktionalität konzentrieren, für die er aus einem reichhaltigen Fundus an kognitiven KI- und anderen Services schöpfen kann, während der Bot Connector Service als universelle Schnittstelle dafür Sorge trägt, dass der Bot ohne Änderung des Programms über zahlreiche bekannte Kanäle angesprochen werden kann – sei es via Facebook Messenger, Microsoft Teams, Skype und viele mehr;  selbst Cortana steht für eine Anbindung zur Verfügung.

Denn schlussendlich ist der Bot ja ein Anwendungsprogramm ohne eigene grafische Benutzeroberfläche, benötigt also immer noch ein weiteres Medium für den Dialog mit dem Anwender.

Flexible Anwendungen mit großem Potential

Sicherlich haben all die großen ERP-, CRM- und übrigen Datenbankanwendungen mit unternehmensweitem Charakter unverändert und auch künftig ihre Daseinsberechtigung. Die flexiblen und wendigen Chat- und Softbots jedoch bergen ein enormes Potential, all die Aufgaben zu lösen, für die es bis dato kein spezielles oder aber viele kleine Programme brauchte.

War es bislang nur höhergestellten Personen im Unternehmen oder im Privaten vergönnt, einen persönlichen Assistenten zur Hand zu haben, der all die kleinen lästigen Aufgaben erfüllte, so rückt die enorme Vielfalt jetzt schon verfügbarer kleiner und großer KI-basierter Funktionalitäten den intelligenten digitalen Assistenten in greifbare Nähe. Es sollte kein Wunschtraum in ferner Zukunft mehr sein, sondern mit den zur Verfügung gestellten Mitteln und cloudbasierten Betreiberservices direkt in die Tat umgesetzt werden können.

Best-Practice zum Anfassen

Mit MrQ bietet QUNIS eine Best-Practice-Lösung und macht damit die Funktionsweise eines Softbots bestehend aus dialogorientierter klassischer Anwendungsentwicklung, Artifical Intelligence (AI), Cloud und Machine Learning direkt erlebbar. Darüber hinaus bildet MrQ den Grundstock für die Entwicklung kundenspezifischer Prototypen und Softbots. MrQ nutzt das Microsoft Bot Framework und die Azure Cognitive Services, betrieben wird MrQ als Azure Managed Service.

Mehr von MrQ finden Sie unter www.mr-qunis.com, auf seiner Facebook-Seite oder in der QUNIS-App.

Bereit für Künstliche Intelligenz?

Erstellt am: Donnerstag, 14. Juni 2018 von Monika Düsterhöft

Wir alle kennen den Begriff Künstliche Intelligenz und haben über das Science-Fiction-Genre Bekanntschaft mit An droiden oder dem Supercomputer Deep Thought gemacht. Wir nutzen Internet-Suchmaschinen oder Sprachassistenten, und in den Medien wird täglich über Innovationen wie selbstfahrende Autos, intelligente meinungsbildende Algorithmen oder menschlich anmutende, sogar mit Gefühlen ausgestattete Pflege- und Service-Roboter berichtet. Veränderungen, die KI für unsere Lebens-, Geschäfts- und Arbeitswelt mit sich bringt, werden in der kompletten Bandbreite von Panik über Skepsis und Besorgnis bis hin zur totalen Faszination diskutiert. Und dass Daten sowie der intelligente Umgang damit die Basis dafür bilden, ist kein Geheimnis mehr.

In diesem Zusammenhang den Umsetzungstand von KI in den Unternehmen zu erfragen und dabei den Fokus auf die Gruppe der Controller zu legen, erschien uns als logisch und interessant. Denn gerade die Controller sind es, die sich schon lange mit dem Thema Datenauswertung beschäftigen und auf dem Weg der digitalen Transformation zum datengetriebenen Unternehmen viele entscheidende Stationen mitgestaltet haben. Sie sind es, die innovativen Schlüsseltechnologien und Verfahren der Datenanalyse aufgegriffen, weiterentwickelt und bis hin zur Etablierung als Standardtechnologie vorangetrieben haben. Waren BI, OLAP, Big Data und Advanced Analytics namentlich bis dato zwar eher im Umfeld der Unternehmenssteuerung anzutreffen, so sind sie nun Teil von Digitalisierungsinitiativen und Innovationsprojekten.

Gemeinsam mit der Controller Akademie haben wir von QUNIS eine Anwenderbefragung zur Organisation von Projekten mit Big Data und Advanced Analytics durchgeführt und sind zu folgenden Ergebnissen gelangt: Eine große Mehrheit der Unternehmen gaben an, dass Advanced Analytics bzw. KI-Methoden hoch strategische Themen sind und eine wichtige Rolle bei der digitalen Transformation spielen. Dabei setzen 44 Prozent mit Advanced Analytics noch primär auf interne Prozessverbesserungen. Genauso viele Unternehmen sehen diese Methoden jedoch als entscheidend für zukünftige Innovationen rund um ihre Produkte und Services. Trotz der bestehenden Unsicherheiten hinsichtlich der Umsetzung erklären die Unternehmen fast durchweg ihre hohe Investitionsbereitschaft.

Beim Thema Datenmanagement ist den meisten sehr wohl klar, dass die klassische BI-Architektur mit Data Warehouse (DWH) nur begrenzt für die neuen Anwendungsbereiche geeignet ist. Die Kombination vorhandener Daten, die oft in einem DWH organisiert sind, mit weiteren internen oder externen Datenquellen und -formaten, wird als eine der größten Herausforderungen genannt. Dazu gehört auch die offene Frage, wie sich eine flexible Datenarchitektur schaffen lässt, welche die bisherige BI- mit der Big-Data-Welt zusammenführt und somit auch Investitionen schützt. Für diese Verbindung hat sich das Data-Lake-Konzept in der Praxis als sehr tragfähige Lösung bewährt. Dieses kann den Auf- und Umbau hin zu agileren und offenen Architekturen unterstützen.

Aber auch organisatorisch müssen für das datengetriebene Unternehmen die richtigen Weichen gestellt werden. Ohne klare Definitionen der Datenhoheit mit Verantwortlichkeiten, die über Rollen wie Data Owner, Data Scientist oder Data Engineer im Rahmen einer Data Governance festgelegt sind, nutzt das beste Systemkonzept nichts.

Einig ist man sich zudem darüber, dass die Verantwortlichen über spezifische Skills verfügen müssen, die über bisherige Anforderungen im BI-Bereich hinausgehen. Falls das BI-Team sich um Advanced Analytics kümmern sollte, halten fast 60 Prozent der Befragten es für notwendig, dass hier zusätzliche Kompetenzen aufgebaut werden. Neben Spezialisten für statistisch-mathematische Methoden sind dabei auch Experten gefragt, die hochkomplexe Auswertungen in verständliche, businessrelevante Informationen übertragen.

Viele Unternehmen haben bereits gute Ideen, an welcher Stelle sie Advanced Analytics und KI-Methodik einsetzen könnten. Hinsichtlich der konkreten Umsetzung auf Basis praktikabler Use Cases tut man sich derzeit aber noch schwer. Hier sind Controller gefordert, ihre Erfahrung in der Datenanalyse einzubringen. Expertenhäuser wie QUNIS ergänzen und begleiten dies mit bereichsübergreifender, strategischer Fachkompetenz. Diese Kombination ist eine optimale Basis, um datengetriebene Geschäftsmodelle voranzubringen und neue Potenziale für das Unternehmen zu erschließen.

Alle Ergebnisse im Detail finden Sie hier KOMPLETTE STUDIE DOWNLOADEN

Trends bei Nutzung von Big Data 2018

Erstellt am: Dienstag, 6. März 2018 von Sascha

Nach Einschätzung der Marktforscher von IDC wird der weltweite Umsatz mit Software, Hardware und Services für Big Data und Big Data Analytics in den kommenden zwei Jahren auf 203 Milliarden US-Dollar steigen. Das jährlich zu den bereits vorhandenen Datenbergen hinzukommende Datenvolumen könnte laut der Auguren im Jahr 2025 bereits bei 180 Zetabyte liegen. Gewaltige Datenmengen und viele Chancen für Unternehmen, neue oder detailliertere Informationen zu extrahieren und für die Unternehmens- und Prozesssteuerung, Planung oder Produktentwicklung einzusetzen.

Prescriptive Analytics

Unter den vielen Aspekten, die im Zusammenhang mit der Nutzung von Big Data und Advanced Analytics diskutiert werden, finden sich einige Entwicklungen, die laut Marktbeobachtern in den kommenden zwölf Monaten besondere öffentliche Aufmerksamkeit erfahren werden.
So wird erwartet, dass das Interesse an Prescriptive Analytics steigt. Es vereint Verfahren des Machine Learning, Simulationen und mathematische Berechnungen, um bei einer bestimmten Fragestellung die optimale Lösung oder das beste Ergebnis unter verschiedenen zur Auswahl stehenden Möglichkeiten zu ermitteln. Praktisch werden also beispielsweise kontinuierlich und automatisch neue Daten verarbeitet, um die Genauigkeit von Vorhersagen zu erhöhen und bessere datengetriebene Entscheidungsoptionen zu bieten. Prescriptive Analytics könnte so neben Cognitive Computing den Mehrwert bei der Analyse von Big Data künftig erheblich steigern helfen.

ECM und Big Data

Big Data ist ein Sammelbegriff, der in der Praxis sowohl vorhandenen Daten, etwa aus einem Data Warehouse oder ERP-System, als auch neue Datenquellen einbezieht. Diese können dabei durchaus auch innerhalb der eigenen Unternehmensgrenzen liegen. So wird für 2018 erwartet, dass sich Organisationen mehr für historische Daten und Dokumente interessieren werden, die bislang nicht in einer digitalen Form vorliegen. In diesen können wichtige Informationen liegen, die zum Beispiel für Voraussagen hilfreich sein können. Damit zeichnet sich hier eine Entwicklung ab, die wir auch bei QUNIS sehen, nämlich der Annäherung und Kombination von Enterprise Content Management und Analyseumgebungen.

Datenqualität statt Datenquantität

Angesichts der wachsenden Datenberge ist es trotz sinkender Hardwarepreise, Cloud und Konzepten wie dem Data Lake auf Dauer nicht wirtschaftlich, schlicht alle erreichbaren Daten zu speichern. Unternehmen müssen sich daher in den kommenden Monaten strategisch damit beschäftigen, auf welche Datensätze sie es besonders abgesehen haben bzw. welche ihnen Ansätze für bessere Analysen bieten können. Ebenso wird es um Wege zur Verbesserung der Datenqualität gehen, denn Datensätze können irrelevant, ungenau oder gar beschädigt sein. Qualität statt Quantität, heißt also die Parole für 2018.

Machine Learing hilft beim Datenschutz

Herzstück einer Big-Data-Analyse sind Verfahren der Künstlichen Intelligenz. Diese müssen in 2018 verstärkt für Auswertungen im Bereich der Datensicherung und Datensicherheit zum Einsatz kommen, da auf diesem Anwendungsgebiet laut Marktbeobachtern Nachholbedarf herrscht. So werden Maschinen beispielsweise schon bald in der Lage sein, mit Hilfe von Machine Learning menschliches Verhalten „vorherzusagen“ und automatisiert „unlabeled data“ zu verwenden. Dadurch wird sich Künstliche Intelligenz zu einem zentralen Instrument für Datenschutz und Abwehr unerlaubter Zugriff entwickeln.

Neue Rollen und viele Stellenangebote

Aber nicht nur die Vielfalt und Nutzungsformen von Big Data werden sich in der nächsten Zeit weiterentwickeln, sondern auch die Menschen, die damit arbeiten. So entstehen neben dem viel zitierten Data Scientist weitere Rollen in den Organisationen, welche die Erfassung, Auswertung und Operationalisierung von Big Data überhaupt erst strukturiert möglich machen. Auch die QUNIS hat hierzu bereits im Rahmen ihrer Big Data Methodik ein modernes Rollenmodell entwickelt, das detailliert die Aufgaben und Kombinationen diskutieren und definieren hilft. Zugleich wächst im Markt die Sorge, dass sich nicht ausreichend Spezialisten für diese oft sehr anspruchsvollen Aufgaben und Rollen rund um Big Data finden lassen. So schätz beispielsweise IBM, dass allein in den USA das Stellenangebot für Big-Data-Experten im weitesten Sinne von 364.000 offenen Stellen in 2018 auf 2,72 Millionen bis 2020 ansteigen wird.