Archiv für die Kategorie Business Intelligence

BOGNER: E-Commerce-Reporting in wenigen Wochen implementiert

Erstellt am: Dienstag, 22. Juni 2021 von Monika Düsterhöft

Die Sports Fashion Brand BOGNER setzt seit 1932 Maßstäbe für exklusive Sportmode. Neben dem globalen stationären Handel nimmt der Online-Shop bogner.com einen immer größeren Stellenwert ein. Für den E-Commerce-Bereich hat BOGNER mithilfe eines kompakten Projektmodells von QUNIS in kürzester Zeit ein individuelles, skalierbares Reporting aufgesetzt.

Mit dem Ansatz der Scalable Self Service BI von QUNIS konnten wir zügig und mit wenig Aufwand unser individuelles, jederzeit erweiterbares Reportingsystem implementieren. Power BI ermöglicht es uns dabei, sehr schnell aus verschiedenen Quellen Zahlen zusammenzuführen und direkt einen Look & Feel für Berichte zu generieren.


Florian Felber,
Director Head of Analytics & BI Systems
im Group Accounting bei BOGNER 

Ablöse des Excel-basierten Reportings gewünscht

BOGNER ist mit den Marken BOGNER Sport, BOGNER Fashion, FIRE+ICE sowie BOGNER Kids und Lizenzen weltweit vertreten. Für den wachsenden E-Commerce Bereich hat das BOGNER Headquarter in München ein neues OMS (Order Management System) eingeführt. In diesem Zuge sollte auch das Excel-basierte Reporting durch eine moderne BI-Lösung ersetzt werden, die neben den klassischen Umsatzkontrollen auch branchenspezifische Channel-Analysen unterstützt.

Der Finanzbereich von BOGNER wünschte sich eine schnell umsetzbare Lösung, die intern gesteuert und nach Bedarf ausgebaut werden kann. Dieser Vorstellung kam das Vorgehensmodell der Scalable Self Service BI für Microsoft Power BI von QUNIS sowohl technologisch als auch konzeptionell optimal entgegen. Mit dem Konzept von QUNIS sahen die Projektverantwortlichen die Möglichkeit, ihre Applikation sicher und zügig zu implementieren und selbstständig weiter zu entwickeln.

Kompaktes Coaching-Projekt

Gemäß des standardisierten Vorgehensmodells von QUNIS startete das Projekt mit einem halbtägigen Analyseworkshop zur Klärung von Anforderungen und Aufwand. Für BOGNER stand fest, dass der Projekttyp mit Coaching-Ansatz und möglichst viel Eigenleistung die richtige Wahl ist.

Die Entwicklung in Power BI startete Anfang Oktober 2020 auf einem separaten Testserver. Mit der Hilfe eines QUNIS-Beraters arbeitete das Team von BOGNER sich in die Anbindung von Datenquellen, die Datenmodellierung und die Erstellung von Reports ein. Bereits im Dezember 2020 konnte das Reporting in Betrieb genommen werden, und zwischen Januar und April 2021 wurden weitere Detailfragen mit dem QUNIS-Berater geklärt.

Bis April 2021 waren sieben der angesetzten zehn Beratertage in Anspruch genommen und zugleich bereits 90 Prozent der BI-Entwicklung bei BOGNER intern angesiedelt. Florian Felber, Head of Analytics & BI Systems im Group Accounting bei BOGNER, hält fest: „Wir haben hervorragend mit QUNIS zusammengearbeitet. Der Wissenstransfer hat bestens funktioniert und wir hatten sehr interessante und fruchtbare Workshop-Tage“

Als wesentlichen Erfolgsfaktor sehen die Entwicklungspartner die Teamzusammenstellung: Bei BOGNER standen ein Projektleiter, zwei BI-Experten für die Entwicklung von Datenmodellen und Reports sowie zwei Fachanwenderinnen aus den Bereichen Controlling und E-Commerce für das Projekt bereit. Auch die Terminierung der Workshops, die jeweils ausreichend Zeit für interne Vorbereitung und Abstimmung ließ, war aus Sicht des Projektteams zielgenau.

Individuelles Sales-Reporting

Die Anbindung von Datenquellen und der Entwurf von Berichten wurden direkt in Power BI umgesetzt. Power BI enthält zahlreiche Konnektoren zur Einbindung von On-Premises- oder Cloud-Datenquellen. Über den firmenweiten Data Lake von BOGNER hat das Team u.a. Vertriebsinformationen aus dem E-Commerce-System, historische Werte aus Microsoft AX, tagesaktuelle Währungskurse aus SAP, Plandaten aus Excel sowie Stammdaten aus dem CRM-System integriert und damit eine konsistente Core Access Ebene aufgebaut. Florian Felber erklärt: „Power BI ermöglicht es, sehr schnell aus verschiedenen Quellen Zahlen zusammenzuführen und direkt einen Look & Feel für Berichte zu generieren.“

Mit dem flexiblen BI-Frontend konnte das Team auch die gewünschten Reports und Dashboards in kurzer Zeit selbst erstellen. Fachlich stehen die Verkaufszahlen aus dem E-Commerce-Bereich im Fokus. Das Monatsreporting zeigt Umsatz- und Bestandsinformationen im E-Commerce-Bereich, gegliedert nach Divisions, inklusive Vorjahres- und Planabgleichen sowie Finanzkennzahlen.

Wichtige Auswertungen sind beispielsweise eine Bestenliste, Nachfrage-, Retouren- und Stornoraten, Warenkorbanalysen und die Ermittlung von Margen und Benchmarks. Als branchenspezifische Besonderheit sind bei den Auswertungen saisonale Logiken bzw. die regelmäßigen Erscheinungstermine neuer Kollektionen berücksichtigt. Das internationale Reporting ist in Englisch gehalten und wird jeweils auf Basis aktueller Währungskurse kalkuliert

Mobile Self-Service-BI

Die Nutzer in den USA und Europa greifen über die Power BI App auf die Cloud-Berichte zu. Die Datensicherheit wird dabei über das Power BI Gateway gewährleistet. Das Modul ermöglicht u.a. die zentrale Definition eines firmenweiten Berechtigungskonzepts und die einfache Verwaltung von Rollen und Zugriffsrechten. Derzeit sind das Group Accounting und Controlling, das Digital-Team und der Logistik-Partner von BOGNER als Nutzer eingebunden.

Die Anwender rufen die Reports je nach Vorlieben beispielsweise auf dem Smartphone oder Tablet, als App in Microsoft Teams oder als Excel Export ab. Das Nutzerszenario lässt sich über das Cloud-basierte Frontend schnell und kostengünstig anpassen und erweitern. Das internationale Rollout des Reportings war somit einfach umzusetzen, und auch neue Anwender können jederzeit nach Bedarf hinzugefügt werden.

Enterprise Data Warehouse

Ein wichtiger Aspekt der Scalable Self Service BI ist das strukturierte Datenmanagement. Die an den Enterprise Data Warehouse-Projekten von QUNIS ausgerichtete Datenmodellierung sorgt für klar definierte, skalierbare Datenmodelle und automatisierte Backend-Prozesse. Die standardisierte Reporting-Applikation kann im Nachgang jederzeit in eine vorhandene oder anvisierte Data-Warehouse-Architektur eingegliedert werden.

Hier liegt für das Projektteam von BOGNER einer der zentralen Vorteile des QUNIS-Konzepts: Der Finanzbereich plant sukzessive ein umfassendes Data Warehouse aufzubauen, um damit die heterogene IT-Landschaft verschiedener Geschäftsbereiche zu vereinheitlichen und eine Konzernsicht im hohen Detailgrad zu erstellen.

Bei BOGNER war das Reporting-Projekt Teil einer umfangreichen E-Commerce-Initiative samt Wechsel des Order Management Systems. Prozesse, Kennzahlen, Reports und das Datenmanagement wurden auch vor diesem Hintergrund stets bereichsübergreifend definiert und gut dokumentiert. Eine unternehmensweite Data Governance und eine übergreifende Datenkultur bilden hier beste Voraussetzungen für den sukzessiven Ausbau des E-Commerce-Reportings hin zu einem umfassenden Konzernreporting

Nachhaltige Berichtsplattform

Mit der einfach zu bedienenden Self-Service-BI-Applikation steht den Berichtsempfänger bei BOGNER nun ein dynamisches Reporting für die E-Commerce-Umsätze zur Verfügung. Der Scalable Self-Service BI-Ansatz hat sich dabei als ideale Projektmethode bewährt. Florian Felber sieht diese Vorgehensweise als guten Weg, sehr schnell und ohne großen Aufwand neue Projekte anzugehen.

Standardisierte Strukturen wie Datenmodelle und Logiken werden dann im zweiten Schritt in das Enterprise Data Warehouse übertragen, falls sie sich in der Praxis bewährt haben bzw. entsprechend angepasst wurden.

BOGNER will künftig Schritt für Schritt sein komplettes Konzernreporting in Power BI abbilden und in diesem Zuge ein nachhaltiges und gut zu pflegendes Financial Data Warehouse aufbauen. Die selbstständige Systemadministration und Entwicklung ist dabei für BOGNER ein wesentlicher Pluspunkt der Scalable Self Service BI

Mehr zu BOGNER: Die Willy Bogner GmbH & Co. KGaA mit Hauptsitz in München ist ein international erfolgreiches Lifestyle-Unternehmen und führende Anbieter von exklusiver Sportmode, luxuriöser Sportswear und Designermode. Das Unternehmen tritt in über 50 Ländern mit den Marken BOGNER (Woman, Man, Sport, Kids) und FIRE+ICE sowie Lizenzen auf. Das seit 1932 bestehende Unternehmen wird von Gerrit Schneider und Heinz Hackl geführt, Eigentümer ist Willy Bogner, vertreten durch den Treuhänder Arndt Geiwitz.

Mehr zu QUNIS Scalable Self Service BI: Steffen Vierkorn, Geschäftsführer QUNIS GmbH erklärt, was hinter dem QUNIS-Vorgehensmodell steckt, eine kostenfreie Checkliste steht zudem zum Download bereit. QUNIS Scalable Self Service BI

Moderne Data & Analytics-Vorhaben fordern Cloud-Basis-Know-how beim Kunden

Erstellt am: Donnerstag, 13. Mai 2021 von Monika Düsterhöft

Die Cloud bietet umfassende Vorteile für BI und Advanced Analytics

Die Cloud gewinnt immer mehr an Bedeutung. Nicht nur als Möglichkeit für den generellen Aufbau von IT-Architekturen und Business-Modellen, sondern auch ganz konkret bei der Umsetzung von BI- und Advanced-Analytics-Projekten. Denn die Cloud bietet viele unschlagbare Vorteile. Diese liegen zum einen im Bereich der Kostenersparnis und Kostenkontrolle: Bezahlt wird nur, was tatsächlich an Leistung verbraucht wird, die Abrechnung erfolgt nach dem “Pay as you go”-Prinzip, es fallen keine Vorabkosten an und Investitionsausgaben für längerfristige Anlagegüter (CapEx) werden reduziert.

Zum anderen – und dies ist auch besonders für die Abbildung von Advanced-Analytics-Szenarien interessant – erlauben Cloud-Architekturen eine bedarfsgerechte Skalierung und damit die schnelle Bereitstellung passgenauer Infrastrukturen. Dank tiefer Integration in DevOps-Prozesse lassen sich zudem Entwicklungszyklen verkürzen, darüber hinaus können robuste Architekturen mit zum Beispiel Redundanzen in mehreren Regionen und Rechenzentren auf einfache Art und Weise sowie mit äußerst überschaubarem Administrationsaufwand realisiert werden. Zunehmend mehr Unternehmen erkennen diese Vorteile und sehen, was mit Cloud-Architekturen gerade auch für BI- und Analytics-Vorhaben möglich ist.

Die Stimmung ist positiv, birgt jedoch auch Herausforderungen 

Wir bei QUNIS erleben es täglich in unseren Projekten. So gut wie all unsere Kunden haben sich bereits mit dem Thema Cloud beschäftigt – und sei es nur gedanklich. Sie sind offener denn je für den Einsatz der neuen Technologien und Use Cases, bei denen Big Data oder Streaming Data in die Analysen miteinbezogen werden, sind in der Zwischenzeit zur Realität geworden. Hinzu kommt, dass BI- und Analytics-Projekte oftmals aufgrund ihrer Spezifika als „Leuchtturm“-Initiativen gelten. Und nicht selten handelt es sich dabei auch um das erste Projekt im Unternehmen, das ganz bewusst in der Cloud umgesetzt werden soll.

Eine Herausforderung, die sich daraus ergibt und die wir aktuell beobachten: Fragen zum Cloud-Konzept und damit zu Aspekten wie Networking, Monitoring, Deployment, Governance und Compliance, aber auch zur Technologie selbst, werden in BI- und Analytics-Projekten oft zum allerersten Mal gestellt und müssen erst grundlegend geklärt werden. Ein großer Teil der Projektaufwände entfällt also auf Themen, die nicht Kern des eigentlichen Projektes sind. Und Aspekte wie Cloud-Einarbeitung, -Know-how-Transfer und -Konzept-Erstellung wirken sich bemerkbar auf Timeline, Budget und Qualität des eigentlichen Projektes aus, da sich  „Nebenkriegsschauplätze“ ausbilden, die nicht originär mit den fachlichen Anforderungen in Zusammenhang stehen.

Wir versorgen Projekt-Teams mit notwendigem Cloud-Know-how

Die Erkenntnis, dass das notwendige Cloud-Basis-Know-how in Unternehmen oft nicht ausreichend vorhanden ist, aber für die zielgerichtete Umsetzung von BI- und Analytics-Projekten immer essenzieller und dringender notwendig wird, hat uns dazu bewogen, ein entsprechend fokussiertes Schulungsprogramm zu entwickeln:

Mit der dreitägigen und aus sechs Modulen bestehenden Schulung „Modern Data Management & Analytics on Microsoft Azure“ wollen wir Unternehmen, die eine Lösung in der Cloud planen, dabei unterstützen, sich das geforderte Cloud-Know-how bereits vor Projektbeginn anzueignen. Zugleich regen wir im Rahmen der Schulung dazu an, sich Gedanken über den Cloud-Reifegrad des eigenen Unternehmens zu machen. So möchten wir unsere Teilnehmer dazu befähigen, die notwendigen Themen zu identifizieren und intern zu adressieren.

Denn eine moderne, ganzheitliche BI-Lösung in der Cloud besteht aus deutlich mehr Komponenten als ein klassisches Data Warehouse (DWH) On-Premise. Die Auswahl der richtigen Komponenten und der Aufbau einer ganzheitlichen Architektur stellen dabei eine besondere Herausforderung dar. In unserer Schulung stellen wir dafür Azure-Komponenten aus verschiedenen Bereichen vor, vergleichen ähnliche Angebote miteinander und ordnen die einzelnen Komponenten den diversen Bereichen einer BI-Lösung zu.

Facettenreiche Schulungsinhalte geben fundierten Überblick zu Azure

Im Rahmen der Schulung gehen wir auf Komponenten für eine relationale DWH-Architektur in der Cloud genauso ein wie auf die Komponenten für Big-Data- und Streaming-Use-Cases und zeigen auf, wie sie in eine klassische DWH-Architektur integriert werden können, um diese sinnvoll zu ergänzen.

Wir befassen uns einerseits mit Möglichkeiten des „Lift & Shift“, bei denen bestehende Applikationen und Pipelines direkt in die Cloud übertragen werden können. Andererseits diskutieren wir auch Cloud-optimierte, also „Cloud-Optimized“-Konzepte, die verstärkt Cloud-native Funktionen wie “Serverless Computing“ und „Platform as a Service“ verwenden. Teilnehmer erhalten eine Übersicht der skalierbaren Cloud-Komponenten zur Umsetzung des Modern DWH in Azure. Die Schwerpunkte liegen auf

  • Extraktion und Datenflusssteuerung (Azure Data Factory, Event Hub – Kafka der Cloud)
  • Transformation und Compute (Azure Databricks – Apache Spark, Azure Functions – Serverless Computing, “Code First”, Azure Logic Apps – Serveless Computing, “Design First”, Azure SSIS integration runtime)
  • Speicherung und Storage (Blob und File-Storage, Azure Data Lake Storage Gen2, Azure Synapse Analytics)
  • Analyse und Bereitstellung der Daten (Polybase – „Logical Data Warehouse“) und Azure Analysis Services (Power BI).

Reine Data-Science-Anforderungen und -Projekte lassen sich zudem in jeder Größenordnung sehr gut und auch vollständig in der Cloud abbilden. Gerade die einfache und bedarfsgenaue Skalierbarkeit von Rechnerressourcen ist dabei ein immenser Vorteil gegenüber einer On-Premise-Lösung. In unserer Schulung stellen wir die verschiedenen Möglichkeiten zur Durchführung von Advanced-Analytics-Use-Cases vor.

  • So erlaubt die umfassende grafische Analytics-Umgebung „Azure Machine Learning Studio“, komplexeste Algorithmen vollständig ohne eigene Programmierung zur Anwendung zu bringen. Die gute Integration der mächtigen und skalierbaren Databricks-Umgebung ermöglicht es, analytische Modelle auf Big Data mit Apache Spark anzuwenden. Deshalb wird das System oft als Schweizer Taschenmesser der Big-Data-Datenverarbeitung bezeichnet.
  • Bei Apache Spark handelt es sich um ein einheitliches In-Memory-Big-Data-System, das bestens für die performante und parallele Verarbeitung von enormen Datenmengen geeignet ist. Apache Spark verarbeitet die Daten im Arbeitsspeicher und versucht das Schreiben auf eine Festplatte zu vermeiden. Databricks basiert auf den in Apache Spark verfügbaren Funktionen und übernimmt die komplette Verwaltung des Spark-Clusters.
  • Daneben lernen Sie die „Cognitive Services“ kennen mit fertig trainierten Anwendungen von Bild- über Sprach- oder Formularerkennung, die als Komponente in Ihre Use-Cases integriert werden können. Und wir stellen Ihnen die vorkonfigurierte „Data Science Virtual Machine“ bereit als Allzweckwerkzeug für eine kurzfristig verfügbare Entwicklungsumgebung.

Auch für die Operationalisierung von Use-Cases bietet Ihnen die Cloud vielfältige Möglichkeiten, um mit bereits geringem Konfigurationsaufwand zum produktiven Setup zu gelangen ¬– egal, ob Sie trainierte Modelle als Pipeline im Azure Machine Learning Studio anwenden und per API bereitstellen oder eigene containerbasierte Anwendungen im Kubernetes Cluster orchestrieren.

Kompaktes Wissen und Use Cases aus der Praxis

Mit dem QUNIS-Schulungsangebot „Modern Data Management & Analytics on Microsoft Azure“ ist es unser Ziel, unsere Teilnehmer bestmöglich auf die ersten Schritte mit der Cloud-Technologie Microsoft Azure im eigenen Unternehmen vorzubereiten. Wir veranschaulichen alle Themen durch Use Cases aus der Praxis und vermitteln in Live-Demos einen tieferen Einblick in die verschiedenen Technologien.

Nach der Schulung sind Sie ausgestattet mit einer breiten Wissensgrundlage und fähig, fundierte Cloud-Entscheidungen für Ihr Projekt treffen.

Mein Tipp: Hier finden Sie eine detaillierte Beschreibung der Schulung und aktuelle Termine. Sollten Sie eine individuelle Schulung für Ihr Unternehmen wünschen, sprechen Sie uns einfach an, wir beraten Sie gerne und unterbreiten Ihnen ein entsprechend auf Ihre Bedarfe zugeschnittenes Angebot. KONTAKT

Fachkonzeption… muss das sein?

Erstellt am: Mittwoch, 7. April 2021 von Monika Düsterhöft

Die Vielfalt an technischen Möglichkeiten sowie das Streben nach pragmatisch schnellen Ergebnissen verleiten gerne dazu, die Fachkonzeption zu vergessen. Sollten Sie aber nicht!

Bei der Umsetzung von Data & Analytics-Projekten befinden sich Organisationen häufig im Spannungsfeld zwischen einerseits einer hohen Erwartungshaltung der potenziellen Anwender, geweckt durch die Vielzahl an technischen Möglichkeiten und der Leistungsfähigkeit am Markt erhältlicher Produkte, und andererseits dem eigenen Bestreben, Projekte schnell zum Erfolg zu führen.

Die erfolgsentscheidende fachliche Konzeption und Definition der umzusetzenden Anforderungen kommt dabei oftmals zu kurz und Lösungen werden zu pragmatisch realisiert. Damit die wichtige Phase der fachlichen Konzeption nicht unter den Tisch und ihr Fehlen Ihnen nachträglich vor die Füße fällt, habe ich für Sie, basierend auf unserer Projekterfahrung, eine Liste mit hilfreichen Hinweisen zusammengestellt.

Die folgenden acht Punkte geben Ihnen eine Orientierung, wie Sie beim Erstellen einer Fachkonzeption vorgehen und auf was Sie achten sollten.

1. Anwendungsfälle nutzenorientiert definieren

Anwendungsfälle benötigen eine strukturierte Beschreibung und klare Zielsetzung. Neben einer fachlichen Beschreibung der fachlichen Anforderungen, den Voraussetzungen für die Umsetzung sowie die benötigten Daten und deren Herkunft, müssen vor allem die Ziele inklusive der damit verbundenen Nutzenfaktoren beschrieben sein und diesen die erwarteten Aufwände gegenübergestellt werden.

Somit wird die Priorisierung von Use Cases erheblich unterstützt bzw. erleichtert sowie die Basis geschaffen für eine spätere Analyse der Nachhaltigkeit bzw. des tatsächlich erreichten Business Nutzens.

2. Umfang von Anwendungsfällen für Data & Analytics festlegen

Eine Zielrichtung für Data & Analytics-Initiativen ist essenziell, um wichtige Basisparameter und Fragestellung für das Projekt zu definieren. Von daher sollten die geplanten Einsatzbereiche und angestrebten Lösungen abgesteckt, grob priorisiert und auf einer Roadmap festgehalten werden.

3. Zentrale Themen ganzheitlich betrachten

Beim Aufbau einer Data & Analytics-Landschaft und der Umsetzung der verschiedenen Szenarien gibt es übergreifende Themengebiete mit zentraler Bedeutung, die einheitlich und zu Beginn des ersten Anwendungsfalles für alle weiteren mit definiert werden sollten.

Dazu zählen unter anderem:

  • Infrastrukturfragestellungen
  • Security- und Zugriffskonzepte
  • Anforderungen an die Datenharmonisierung
  • Datenqualität und -hoheit in Abstimmung mit den Quellsystemen

4. Mit kleinen Schritten starten

Erste Anwendungsfälle sollten keinesfalls zu groß dimensioniert werden. Gerade für den Einstieg in Data & Analytics-Projekte ist es wichtig, Pilotprojekte überschaubar zu definieren, damit Ergebnisse und damit verbundene Erfolge sichtbar bzw. Nutzenvorteile in der Organisation spürbar werden. Nicht zu unterschätzen ist neben den ersten spürbaren Ergebnissen auch eine Lernkurve, die das gesamte involvierte Team durchschreitet.

5. Fachliche Feinkonzeption bildet das stabile Fundament

Sobald die Roadmap für Anwendungsfälle festgelegt ist, müssen die zuerst priorisierten fachlich im Detail spezifiziert werden. Hier sollte immer von den Anforderungen der Anwender ausgegangen werden. Dies kann z.B. bei einem Reporting Use Case die Visualisierung der Daten, Definition von Kennzahlen und deren Berechnung, benötigte Dimensionen sowie das zugrunde legende fachliche Datenmodell sein.

Diese fachlichen Anforderungen gilt es dann in ein technisches Konzept für die Realisierung zu transformieren und die erforderlichen Rahmenparameter für die Implementierung festzulegen, der ein zentrales technisches Datenmodell mit einer Anbindung der notwendigen Quellsysteme zugrunde liegt.

6. Aufwände realistisch und verlässlich abschätzen

Auf Basis der Feinkonzeption kann eine valide und möglichst realitätsnahe Schätzung der Aufwände für die Implementierung erfolgen. Somit kann abschließend bewertet werden, wie viel Aufwand erforderlich ist, um den gegenüberstehenden Business-Nutzen zu erzielen.

7. Management Freigabe einholen

Für die umzusetzenden Use Cases sollte neben der Roadmap auch eine Freigabe der Budgets für die geplanten Anwendungsfällen durch das verantwortliche Management erfolgen.

8. Data & Analytics-Projekte effizient steuern

Um eine möglichst effiziente und zielgerichtete Projektsteuerung zu erreichen, sollten für die verschiedenen Projektphasen die am besten geeigneten Methoden angewendet werden.

  • Die Erfahrung zeigt, dass Best Practices für Analytics-Projekte eine Verzahnung von klassischen und agilen Methoden erfordern.
  • Übergreifende Themen wie beispielsweise die Definition einer Strategie und Roadmap, Konzeption und Priorisierung der Umsetzungsplanung werden eher klassisch gesteuert.
  • Die technische Umsetzung erfordert agile Methoden. Spezifizierte Anwendungsfälle werden gemäß der Umsetzungsplanung in die agile Projektsteuerung übergeben und dann iterativ umgesetzt.

Zusammenfassend kann man festhalten, dass neben einer strategischen Planung und Ausrichtung einer Data & Analytics-Initiative die Aufteilung des Gesamtvorhabens in einzelne Anwendungsfälle und deren Konzeption erfolgsentscheidend ist, ohne das große Ganze aus dem Blick zu verlieren und einen stetigen Projektfortschritt und damit verbundene Erfolge zu erreichen.

Mein Tipp: Gerne informiere ich Sie, wie wir diese acht Schritte gemeinsam mit Ihnen gehen. Sprechen Sie mich einfach an. Sie finden mich auf LinkedIn oder schreiben Sie mir hier, ich melde mich gerne bei Ihnen. KONTAKT

Will man mit der Digitalisierung erfolgreich sein, braucht es dringend ein Datenmanagement-Konzept!

Erstellt am: Donnerstag, 21. Januar 2021 von Monika Düsterhöft

An Datenmanagement denken heißt Digitalisierung lenken

Geschäftsmodelle werden vermehrt datengetrieben. Dies bedeutet nicht zuletzt, dass Daten zu einer bedeutenden Ressource in Unternehmen werden. Um mit Daten aber nun effizient und strukturiert umzugehen benötigt es dringend ein Datenmanagement.

Die Teilnehmer von the factlights 2020, der größte Online-Erhebung zur Realität von Digitalisierung und Datenarbeit im deutschsprachigen Raum bestätigen dies. Sie sehen in mangelnder Datenqualität und fehlendem harmonisierten Datenbestand eine der größten Hauptherausforderung, um den neuen Anforderungen gerecht zu werden (vgl. Studien-PDF S. 25). Zudem bestätigen sie, ein einheitlicher Datenbestand entscheidungsrelevanter Daten ist essenziell, sei eine der fünf wichtigsten Erkenntnisse der Digitalisierung für sie (vgl. Studien-PDF S. 31).

Hier also vier Aspekte, die Sie im  Zuge der Digitalisierung und speziell im Hinblick auf das Thema Datenmanagement, im Auge behalten sollten:

 1. Daten sind ein wertvolles Asset

Heutige Anforderungen verlangen vermehrt eine Cross-funktionale Denke und das Bewusstsein, speziell mit Daten ein wertvolles Gut für interne und externe Zwecke zu besitzen. Trotz dieses Trends sehen zahlreiche Unternehmen Daten immer noch nicht als ein zentral zu organisierendes Asset an. Sie agieren vielmehr eher projektgetrieben und teilweise auch sehr unorganisiert.

Zudem betrachten sie den Einsatz von Daten oftmals weniger unter dem Aspekt des Nutzenpotenzials und dessen Zuordnung, noch denken sie konkret an eine nachhaltige Verankerung der Datenerzeugung und Datennutzung in der Organisation. Folgende zwei essentielle Fragen sollten in diesem Zusammenhang also immer und standardmäßig erörtert werden:

  • Worauf genau zahlt die Nutzung der Daten ein? Geht es Organisationen primär darum Kosten zu sparen, will man die Qualität bestehender Produkte verbessern, will man Risiken minimieren, Umsatz steigern oder gar Effizienz erhöhen.
  • Wie ist der Aufbau einer funktionierende Data Governance zu realisieren, die entsprechende Ziele, im Rahmen der Datennutzung unterstützt und Risiken minimiert? Konkret geht es hier um Klärung und Zuordnung von Verantwortlichkeiten samt entsprechender Rollen, Vorschriften und Zyklen.

2. Daten(quellen) werden immer heterogen bleiben

Die Herausforderungen für Data & Analytics-Vorhaben sind häufig die heterogenen und nicht harmonisierten Datentöpfe und Systeme. Vielerorts trifft man diesbezüglich auf das Phänomen des „Hoffens auf ein Wunder“, dass alles wie von Zauberhand und vielleicht sogar durch die Einführung des nächsten Systems sauber werden möge.

Ein solches Wunder ist jedoch nicht zu erwarten, da die Datenbestände heterogen bleiben. Hinzu kommen die um sich greifenden Cloud-Lösungen, die die Heterogenität noch forcieren. Gerade weil der Idealzustand aber nie erreicht werden kann, sind schlüssige Konzepte für die Bewertung der notwendigen Datenqualität dringend gefragt.

3. Priorisierung der Datenharmonisierung

Unternehmen sind häufig bestrebt, prozessübergreifend valide und gesicherte Datenbestände aufzubauen. Harmonisieren und Integrieren lautet zumeist die dafür ausgegebene Zielsetzung. Und genau hier fängt oftmals ein nie enden wollendes Projekt an. Denn was gern verkannt wird ist, dass sich die datenorientierten Anforderungen in der Regel nicht auf eine Abteilung oder einen Unternehmensbereich begrenzen lassen – Data does not follow the process.

Die Datenentstehung und deren Nutzung entsprechen sehr häufig nicht der klassischen Linienorganisation. Daten entstehen nicht nur an einer Stelle oder entlang eines Prozesses, denn sie werden Abteilungs- und Bereichs-spezifisch angereichert und ergänzt. Schlussendlich sollen sie aber dennoch an unterschiedlichsten Stellen und in verschiedensten Sichten und Prozessübergängen bereitgestellt und ausgewertet werden können.

4. Analytics-Kompetenz ist unterbesetzt

Die zunehmende Bedeutung von Daten erfordert immer mehr Know-how in der Datenarbeit. Erfahrungsgemäß ist diese Analytics-Kompetenz aber in vielen Unternehmen unterbesetzt. Man kann sogar sagen, viele Organisationen verfügen über absolut unzureichende Ressourcen und Skills. Und auch der Arbeitsmarkt gibt nicht genügend Experten her, so dass man mit Personalaufbau dem entgegenwirken könnte. Angesichts dieses personellen Nadelöhrs liegt eine Lösung darin, die vorhandenen Ressourcen und Skills bestmöglich zu unterstützen.

Der Aufbau eines sehr gut strukturierten Datenmanagements mit entsprechenden Architekturen kann dabei helfen. Denn es ermöglicht Anwendern, sich mit Analytics auseinanderzusetzen, ohne mit der Komplexität des darunterliegenden Datenmanagements konfrontiert zu werden. Gerade auch dem Metadatenmanagement kommt hier ein hoher Stellenwert zu.

Unser Tipp: Diese und weitere Empfehlungen sowie Daten, Fakten, Branchenspecials und alle Ergebnisse der größten Online Erhebung zur Realität von Digitalisierung und Datenmanagement im deutschsprachigen Raum finden Sie in den Studienergebnissen von the factlights 2020.

Holen Sie sich hier direkt Ihr kostenfreies, persönliches Exemplar THE FACTLIGHTS 2020

Dentsu: Zentrales Data Warehouse für Controlling und systemübergreifende Analytics, Data Enrichment und Datenkonsolidierung für automatisiertes Reporting

Erstellt am: Donnerstag, 21. Januar 2021 von Monika Düsterhöft

Die deutsche Tochtergesellschaft der international agierenden Medienagentur-Gruppe dentsu hat ihre heterogenen Datensilos in ein zentrales Financial Data Warehouse überführt. Damit können betriebswirtschaftliche Reports, Analysen, Planungen und Forecasts auf der einheitlichen Basis eines Single Point of Truth entstehen. Mithilfe seiner neuen BI-Lösung generiert dentsu Germany seine entscheidungsrelevanten Daten deutlich schneller und aktueller, aber auch zuverlässiger und sicherer.

Früher galt: heute gebaut und morgen veraltet. Das sollte dringend geändert werden. Erklärtes Ziel war eine übergreifende Datenbasis, die mehrfach täglich aktualisiert wird. Dies sollte eine deutschlandweit systemübergreifende Auswertbarkeit und Analysefähigkeit aller steuerungsrelevanten Finanzdaten ermöglichen.


Patrick Sura,
Director Business Intelligence DACH bei
Dentsu

Datengetriebenes Geschäftsmodell

Die Medienagentur-Gruppe dentsu International wurde 1901 in Japan gegründet. Fokussiert auf die Geschäftsbereiche Media, CRM und Creative bedient das weltumspannende Netzwerk mit seinen 66.000 Mitarbeitenden rund 11.000 Kunden in 143 Ländern. dentsu Germany zählt hierzulande zu den größten fünf Agenturen für Kommunikations- und Mediaberatung. Die 1.500 Beschäftigten verteilen sich auf den Firmensitz in Frankfurt am Main und weitere Standorte in Augsburg, Düsseldorf, Hamburg und München.

In der Media-Branche nehmen Daten ganz generell einen hohen Stellenwert ein. Sie lassen Vorhersagen zu über das Zielgruppenverhalten, um mit möglichst geringen Streuverlusten werben zu können. Zudem sind sie solide Basis für Mediapläne mit zu platzierenden Schaltungen, die das Kundenbudget optimal einsetzen. Datengetrieben sind bei dentsu Germany aber auch die betriebswirtschaftlichen Belange zur Steuerung der vernetzten Agenturen. Nur auf der Grundlage homogener Daten nämlich lassen sich valide Entscheidungen treffen, um das Unternehmen sicher auf Kurs zu halten und den eingeschlagenen Wachstumspfad weiter zu beschreiten.

Diesen Ansprüchen konnte jedoch die bisherige Vorgehensweise nicht mehr gerecht werden. „Jeder hatte mehr oder weniger Zugang zu vereinzelten Datentöpfen und baute sich seine Berichte bei Bedarf in Excel selbst zusammen“, blickt Patrick Sura zurück. „Weil es keinen Single Point of Truth gab, musste man in den Meetings zuerst zeitraubend klären, wer die richtigen Zahlen hat, bevor es an die strategischen Auswertungen gehen konnte.“ Vor diesem Hintergrund traf dentsu Germany die Entscheidung zum Aufbau eines Financial Data Warehouse.

Erfahrenen Projektleiter gewonnen

Hierfür wurde eigens eine neue Stelle geschaffen und 2017 mit Patrick Sura besetzt. Der aus Speyer stammende Diplom- Betriebswirt (FH) ist langjähriger Branchenkenner und hatte als Finance-Controller einschlägige Data-Warehouse-Projekte erfolgreich umgesetzt.

Damals wie heute war QUNIS präferierter Projektpartner. „Ich hatte auf einer Fortbildungsveranstaltung der controller akademie einen der Geschäftsführer kennen gelernt, der dort einen Vortrag hielt“, erinnert sich Patrick Sura an sein Treffen mit Hermann Hebben, das zum ersten gemeinsamen Data-Warehouse-Projekt führte.

Financial Data Warehouse als Single Point of Truth

Die IT-Infrastruktur von dentsu ist nur in geringem Maße global organisiert. Größtenteils unterhalten die Tochtergesellschaften in den Ländern lokale Systeme etwa für ERP (Enterprise Resource Planning), Datenhaltung und Controlling. Beim Antritt fand Patrick Sura rudimentäre BI-Strukturen vor, erste Ansätze über SAP BW waren ins Leere gelaufen.

Gemeinsam mit QUNIS startete er das Projekt zum Aufbau eines Financial Data Warehouse. Die bislang dezentral gehaltenen Finance-Daten sollten zusammengeführt werden für Verknüpfungen, um allgemeingültige Kennzahlen für ein flexibles Controlling zu gewinnen. Beim Aufbau auf technologischer Basis des Microsoft SQL Servers wurde die QUNIS Automation Engine eingesetzt – „mit immensen Vorteilen hinsichtlich Automatisierung und Standardisierung“, wie Patrick Sura betont. So erfolgte die Datenbankentwicklung weitestgehend automatisiert, genauso der komplette ELT (Extract, Load, Transform)-Prozess aus Vorsystemen wie SAP/R3, SAP BW und ein Mediasystem auf ORACLE-Basis.

„Die QUNIS Automation Engine führt auf einer komfortablen Web-Oberfläche durch die einzelnen Schritte. Man designt mit Metadaten und erhält den Quellcode des Data Warehouse, ohne nur eine Zeile dafür händisch geschrieben zu haben.“ Das geht viel schneller und minimiert die Fehlerpotenziale, unterstreicht der Projektleiter und ergänzt: „Der Engine-Logik folgend, wird stets nach dem gleichen Prinzip vorgegangen. Das macht das Ergebnis personenunabhängig und besser nachvollziehbar. Dadurch lassen sich auch spätere Anpassungen in allen relevanten Teilbereichen viel effizienter abbilden.“

Data Enrichment und Datenkonsolidierung

Schon in früher Projektphase wurde deutlich, dass die Stammdaten vor der Übernahme ins Data Warehouse zur Steigerung der Qualität überarbeitet und angereichert werden müssten. Hierfür griff Patrick Sura mit GAPTEQ auf eine „willkommene Alternative zum mühsamen und fehleranfälligen Weg via Excel“ zurück. Bei GAPTEQ handelt es sich um eine Low-Code-Technologie zur Realisierung von Oberflächen für SQL-Datenbanken. Das Einsatzspektrum reicht vom einfachen Web- Formular bis hin zur komplexen Business- Applikation – mit wenig Aufwand per Drag & Drop, smart und sehr schnell, wie sich im Projektverlauf bestätigte.

Top-aktuelle Analysen und Berichte auf Abruf

Nachts und mehrfach im Tagesverlauf werden die Daten im Data Warehouse automatisiert in den Analysis Services bereitgestellt, wo alle KPI (Key Performance Indicators) und Regeln hinterlegt sind. Wer die entsprechenden Power-BI-Dashboards und -Berichte zur Auswertung bereitgestellt bekommt, definiert ein ebenfalls mithilfe von GAPTEQ integriertes Security-Konzept. Nach erfolgtem Kickoff Ende 2018 und Beginn der Arbeiten Anfang 2019 konnten so bereits Ende Juli 2019 die ersten Reports mit der neuen BI-Lösung erstellt werden. Mittlerweile ist jeder Bericht an die Datenquellen des Data Warehouse angeschlossen, so dass Aktualisierungen jederzeit abgerufen und in derselben Ansicht dargestellt werden können.

Maßgeschneiderte Business-Applikationen

Data Enrichment und Security-Konzept ließen das Management erkennen, wie hoch die Potenziale von GAPTEQ sind: „Schier grenzenlos einsetzbar und mit unglaublich schnellen Ergebnissen – eine klassische Programmierung wäre x-fach teurer und langwieriger“, so Patrick Sura. Vor diesem Hintergrund sollten mit Applikationen wie der Target-App und den OPEX Forecasts zwei Business-Applikationen folgen.

  • Über die Target-App werden abgeleitet von der Gesamtplanung die jeweiligen Ziele für das Agenturen-Management in vier verschiedenen Kategorien festgelegt. In GAPTEQ sehen die Manager die vereinbarten Targets kombiniert mit den Ist-Zahlen aus dem Data Warehouse. Das zeigt, was schon erreicht wurde und noch zu tun ist. Sie können die Werte auch fortschreiben und per Knopfdruck sofort sichtbar aktualisieren. Nicht zuletzt dank der QAE und dem einhergehenden betont sauberen Datenmodell, auf dessen Basis die Target- App aufsetzt, hat die Einrichtung gerade mal drei Wochen benötigt.
  • Die OPEX-Forecasts über die Ausgaben für den operativen Geschäftsbetrieb waren nach nur sechs Wochen Projektzeit umgesetzt. GuV-Forecast auf Kontoebene, jeden Monat die Ist-Zahlen anschauen und bis zum Jahresende forecasten, dabei die Budgets abstimmen: Was ehedem mühsam und mit allen Nachteilen per Excel zu erledigen war, geht nun vollständig integriert vonstatten. Dank Security-Konzept können zudem die Ressortleiter zu Controlling-Zwecken auf relevante Kostenstellen zugreifen.

„Wir sammeln die Planzahlen je Kostenstelle von den Verantwortlichen ein und konsolidieren sie direkt auf dem Server mit dem einheitlichen Datenmodell“, erklärt Patrick Sura. „Somit können wir, wenn die Ist-Zahlen des Monats vorliegen, im Nachgang einen Plan-Ist-Vergleich ziehen.“ Als Sahnestückchen hat er auch noch den Drill-Through auf Belegebene integriert. So haben die berechtigten User die Möglichkeit, alle Buchungen zurückzuverfolgen und sich die dazugehörenden Detailinformationen anzeigen zu lassen.

Ergebnisse und Ausblick

Unterstützt von QUNIS hat dentsu Germany mit dem Financial Data Warehouse grundlegende Strukturen für ein schlagkräftiges Controlling geschaffen. In einem fließenden Prozess sind unter sukzessiver Einbeziehung der GAPTEQ-Technologie eine Security- Konzeption und mehrere Business-Applikationen entstanden. Diese ermöglichen eine sichere betriebswirtschaftliche Steuerung des Agenturnetzwerks von den Abteilungs- und Standortleitern über die Geschäftsführer der Agenturen bis hin zum Top-Management mit CFO und CEO.

„Wir generieren heute über Nacht und mehrmals täglich, was früher nur ein Mal im Monat möglich war. Um diesen hohen Grad der Automatisierung und Digitalisierung in unserer Berichterstattung zu erreichen, hätte man mich als Controller mit Faktor 50 klonen müssen. Dabei sind die Anwendungen denkbar einfach gehalten und erfordern keinerlei Schulungen: Wer ein iPhone bedienen kann, kriegt auch das hin“, resümiert Patrick Sura.

Bereits für 2021 ist jetzt das Ausrollen des Gesamtsystems auf die DACH-Region geplant.

Mehr zu dentsu: Dentsu international ist Teil von dentsu und besteht aus weltweit führenden Marken – Carat, dentsu X, iProspect, Isobar, dentsumcgarrybowen, Merkle, MKTG, Vizeum, Posterscope und seinen weiteren spezialisierten Agenturmarken. Dentsu International unterstützt seine Kunden, die Beziehungen zu ihren Konsumenten auszubauen und einen nachhaltigen Fortschritt für ihr Unternehmen zu erzielen. Mit exzellenten Dienstleistungen und Lösungen in den Bereichen Media, CXM und Creative ist dentsu international in über 145 Märkten weltweit mit mehr als 48.000 engagierten Spezialisten tätig. In Deutschland bietet dentsu mit seinem Agenturportfolio die komplette Wertschöpfungskette der Marketing Services an und ist präsent an den Standorten Frankfurt, Hamburg, Düsseldorf, Augsburg und München.

the factlights 2020 Studienergebnisse

Erstellt am: Freitag, 18. Dezember 2020 von Monika Düsterhöft

Die Zukunft gehört den Data Driven Companies – wo stehen Sie?

Die aktuelle Studie the factlights 2020 zeigt, wie sich Unternehmen im deutschsprachigen Raum der Digitalisierung stellen, welche Herausforderungen bestehen und welche Erkenntnisse sich daraus ergeben.

Adopter, Discoverer und Frontrunner: drei Unternehmenstypen kristallisieren sich beim digitalen Reifegrad heraus.

Von März bis Mitte Juni 2020 fand eine großangelegte Online-Erhebung mit über 1.000 Unternehmen aus dem deutschsprachigen Raum statt. Befragt wurden Mitarbeiter und Leitungsebene aus allen Branchen und Unternehmensbereichen. 671 Fragebögen (=n) wurden vollständig ausgefüllt und konnten ausgewertet werden.

Das Unternehmen jedes Befragten wurde basierend auf einem Scoring-Modell dem Grad der Digitalisierung von 0 (keine Anstrengungen) bis 3 (maximaler Fokus auf Digitalisierung) zugeordnet. Im Ergebnis haben sich drei Cluster mit unterschiedlichen Reifegraden herausgebildet. Das Cluster zwischen 0 bis 1,3 – die Adopter, das Cluster größer 1,3 bis 1,9 – die Discoverer und das Cluster mit einem Reifegrad über 1,9 bis 3 – die Frontrunner. Mit 51% ist die Masse der Umfrageteilnehmer in einem Unternehmen tätig, dass den Discoverern zugeordnet ist; 24% gehören zu den Frontrunnern und 25% sind den Adoptern zuzuordnen.

Chancen der Digitalisierung werden von Adoptern, Discoverern und Frontrunnern unterschiedlich bewertet

Adopter sehen die Hauptpotenziale vorrangig in den internen Prozessen. So beziehen sich deren Fokusthemen beispielsweise auf eine höhere Prozesseffizienz oder eine verbesserte Unternehmenssteuerung.

Frontrunner scheinen interne Hürden bereits überwunden zu haben und widmen sich vermehrt der Realisierung komplexerer Chancen. Dazu zählen der Aufbau neuer digitaler Geschäftsmodelle sowie Initiativen zur Umsatzsteigerung oder Produktindividualisierung.

Discoverer zeigen in ihrer Chancenwahrnehmung, dass sie sich inmitten des digitalen Transformationsprozesses zwischen Frontrunner und Adopter befinden. In ihrem Fokus liegen bereits vermehrt komplexere Aspekte wie beispielsweise digitale Geschäftsmodelle, aber auch intern gerichtete Themen wie die Prozesseffizienz oder eine verbesserte Unternehmenssteuerung haben noch ein großes Gewicht.

Veränderungen bei Produkten und Dienstleistungen korrelieren mit dem Digitalisierungsgrad

Produkte und Dienstleistungen verändern sich durch die technologischen Einflüsse der Digitalisierung! Diese Veränderung ist branchenübergreifend zu erkennen. Hinsichtlich der Digitalisierungscluster stechen besonders die Frontrunner und Discoverer als Vorreiter heraus.

Wie stark die technologischen Einflüsse die Produkte und Dienstleistungen bisher verändert haben, hängt durchaus mit dem Digitalisierungsgrad zusammen. Die Veränderungen sind umso größer, je höher der Digitalisierungsgrad ist. Während unter den Adoptern nur 40% von Produkt- und Dienstleistungsänderungen im Rahmen der Digitalisierung berichten, sind es bei den Discoverern bereits 84% und unter den Frontrunnern sogar 99%.

Smarte Zusatzservices sind allgegenwertig! Betrachtet man alle Befragten, bei denen die Digitalisierung zu Veränderungen von Produkten und Dienstleistungen geführt hat, dann geben durchschnittlich 76% an, dass ihr Unternehmen smarte Zusatzservices bereits etabliert hat. Digitalisierung birgt das Potenzial Produktlebenszyklen zu verkürzen! Bei der Umsetzung sind die Unternehmen jedoch noch etwas verhaltener. Mit positivem Beispiel gehen die Frontrunner voran, hier werden im Vergleich zu den Adoptern und Discoverern die Produktlebenszyklen mehr als doppelt so häufig verkürzt.

Der Bedarf nach einer geeigneten Datenwelt, einer strategischen Ausrichtung und Organisation sowie einem dazu passenden Mindset sind allen gemein.

Die Datennutzung verändert sich – Single Point of Truth und Freiheitsgrade sind gleichermaßen gefordert! Daten werden zunehmend demokratisiert – sie kommen unternehmensweit und in den unterschiedlichsten Bereichen zum Einsatz. Dies gilt auch für erweiterte Analysemethoden, die längst nicht mehr nur im Controlling ihren Einsatz finden.

Der Wert qualitativer Daten wird zumeist erkannt und verschiedene Branchen nutzen verschiedene Datenquellen (von interner Software und Applikationen über Hardware Devices, externe Daten bis hin zu Informationen aus sozialen Netzwerken) bereits mehr oder weniger intensiv. Für die effiziente Nutzung von Analytics gilt es jedoch noch einige Voraussetzungen zu schaffen. Ein durchgängiges Datenmanagement oder auch die passende Verankerung in der Organisation zählen dazu.

Viele weitere Erkenntnisse, Daten, Fakten, Extra Notes und Expert Quotes finden Sie in der Studienvollversion. Gleich persönliches Exemplar holen – direkt online und kostenfrei:

 

Holen Sie sich alle Ergebnisse der Studie the factlights 2020!

PERSÖNLICHES STUDIEN-EXEMPLAR HOLEN

 

Unser Tipp: Sie möchten ein Thema vertiefen oder mehr zur Datenerhebung und dem Einsatz von Data Science im Ramen der Studie erfahren? the factlights ist eine Initiative der QUNIS, sprechen Sie uns also gerne direkt dazu an KONTAKT

Rothoblaas: Mobiles Reporting, Data Warehousing und saubere Daten für die weitere Expansion

Erstellt am: Donnerstag, 16. Juli 2020 von Monika Düsterhöft

Das international aufgestellte Südtiroler Unternehmen Rothoblaas mit weltweit 21 Tochter-Unternehmen hat sein veraltetes Reporting-System durch eine moderne BI-Lösung mit zentralem Data Warehouse ersetzt. Mit einem global verfügbaren mobilen Vertriebsreporting und einer jederzeit einfach skalierbaren, modernen Berichtsplattform ist das dynamische Unternehmen nun bestens für die Gegenwart und sein zukünftiges Wachstum aufgestellt.

Die Berichtsplattform mit zentralem Data Warehouse war für uns eine Investition in die Zukunft. Wir sind damit fit für weiteres Firmenwachstum und für den Umgang mit der Ressource Daten. Dass wir unsere Daten jetzt sauber hinterlegt haben und die Analysewelt flexibel ausbauen können, war der einzig richtige Weg.


Peter Prinoth,
Projektverantwortlicher Leiter ERP & BI,
Rothoblaas Srl

Mobile Informationsversorgung für beständig wachsendes Vertriebsteam mit altem System nicht mehr abbildbar

1991 von Robert Blaas gegründet, entwickelt Rothoblaas Produkte und Dienstleistungen für die Profis im Baugewerbe und ist heute ein international erfolgreiches Familienunternehmen. Neben der Zentrale in Kurtatsch in Südtirol ist Rothoblaas derzeit mit 21 Tochtergesellschaften sowie einer eigenen Verkaufsmannschaft in über 50 Ländern präsent und bearbeitet weltweit über 80 Märkte. Und Rothoblaas wächst kontinuierlich; jedes Jahr kommen zwei oder drei Gesellschaften zum Unternehmen dazu. Dazu trägt nicht zuletzt die weitgespannte internationale Vertriebsorganisation des Unternehmens bei.

Um den Außendienst bei seiner täglichen Arbeit vor Ort zu unterstützen, benötigte das dynamische Unternehmen ein zeitgemäßes Informationssystem für das unternehmensweite Vertriebsreporting. Die rund 250 Vertriebsmitarbeiter sollten per Web jederzeit Zugriff auf die aktuellen Kennzahlen zu ihren Kundenkontakten haben und diese auch überall mit ihrem Smartphone abrufen können.

Mit dem vorhandenen Reporting-Tool war diese Informationsversorgung nicht realisierbar. Die veraltete Lösung war von den steigenden Datenmengen überfordert, zu langsam und zu starr. Neue Auswertungen aus dem ERP-System beispielsweise mussten per SQL-Skripts definiert werden, und die Einbindung weiterer Vorsysteme als Datenquellen für kombinierte Auswertungen war kaum möglich. Rothoblaas entschloss sich daher zur Einführung einer modernen BI-Lösung auf Basis eines zentralen Data Warehouse.

QUNIS überzeugt mit Know-how und Chemie

Wichtig für die neue BI-Lösung war, dass alle Standorte auf einer zentralen Datenbasis mit konsistenten Zahlen und Strukturen arbeiten und dass neu hinzukommende Gesellschaften auch mit ihren eigenen ERP-Systemen barrierefrei eingegliedert werden können. Rothoblaas hat sich angeschaut, wie andere Unternehmen die Sache angehen und sind durch Empfehlungen auf QUNIS als Beratungs- und Realisierungspartner gestoßen.

Die guten Referenzen, die geballte Kompetenz und langjährige Erfahrung der Data- Warehouse- und BI-Spezialisten QUNIS wurde als sehr überzeugend empfunden, und von Anfang an hat die Chemie zwischen den Projektpartnern gestimmt.

Gemeinsam mit QUNIS startete das Projektteam Ende 2016 die Implementierung mit der Konzeption und dem Aufbau eines Data Warehouse auf Basis des Microsoft SQL Servers. Als Datenquelle wurde zunächst das vorhandene ERP-System Comarch per Schnittstelle angeschlossen, in weiteren Projektschritten kamen dann die Buchhaltung mit Microsoft Dynamics NAV, das CRM System und schließlich die Planungslösung Prevero dazu. Durch die Zusammenführung der verschiedenen Quelldaten sind seitdem jederzeit kombinierte Ad-hoc-Analysen auf Knopfdruck möglich.

Einfach Integration unterschiedlicher Quellsysteme ist einer der größten Vorteile der neuen BI-Lösung

Peter Prinoth sieht in der einfachen Integration unterschiedlicher Quellsysteme einen der größten Vorteile der BI-Lösung: „Durch die Einbindung von Microsoft Dynamics NAV können wir nun wesentlich schneller und detaillierter Profit- und Cost- Center-Analysen oder Zwischenbilanzen erstellen und die IC-Abstimmung durchführen. Aus Prevero fließen außerdem unsere Plandaten ein und stehen für Plan-Ist-Vergleiche von Umsätzen und Budgets bereit, und die CRM-Lösung steuert die Kundendaten bei. Wir wollen künftig noch weitere Datenquellen einbinden und können außerdem jederzeit neue Gesellschaften mit ihren bestehenden Systemen integrieren. Das gibt uns sowohl fachlich als auch hinsichtlich unserer Wachstumsstrategie volle Flexibilität für künftige Entwicklungen.“

Das weltweite Rollout des Vertriebsreportings wurde im Juni 2018 gestartet, und nach einer Testphase im Parallelbetrieb wurde das Altsystem Ende 2018 abgeschaltet. Seitdem wird die BI-Plattform kontinuierlich nach Bedarf weiter ausgebaut. QUNIS kümmert sich weiterhin um die Umsetzung neuer Anforderungen im Core des Data Warehouse, während das BI-Team von Rothoblaas eigenständig Anpassungen auf der Ebene der fachbezogenen Data Marts vornehmen kann. Viele Fragen können dabei auch schnell in telefonischen Webview- Sitzungen mit der QUNIS-Beraterin von Rothoblaas geklärt werden.

Etabliert und in beständiger Weiterentwicklung

Die BI-Lösung ist heute in allen Standorten weltweit etabliert. Die Vertriebs-Mitarbeiter greifen über die Microsoft Reporting Services (SSRS), das kostenlose Reporting-Frontend des Microsoft SQL Servers, auf ihre Standardreports zu und können damit ihre Zahlen beispielsweise nach Kunden, Produktgruppen oder Artikeln filtern. Die Berichte und Analysen stehen auf dem Smartphone in gleichem Umfang zur Verfügung. Die Bedienung ist einfach und selbsterklärend, so dass auch zur Einarbeitung der externen
Handelsvertreter ein von der Zentrale bereitgestellter Nutzungsleitfaden mit Screenshots ausreichte.

Inzwischen stehen Datencubes für klassische Analysen in den Bereichen Sales, Einkauf, Logistik und Finance bereit. Besonders hilfreich für die weltweite Anwendung ist dabei die automatische Währungsumrechnung, die in lokaler Währung verbuchte Umsätze direkt zum tagesaktuellen Kurs in Euro darstellt. Den Fachabteilungen und BI-Verantwortlichen von Rothoblaas gehen aber auch die Ideen für weitere Anwendungsbereiche nicht aus. In nächster Zeit sollen beispielsweise IC-Margen und -Flüsse im Reporting abgebildet, eine Produktqualitätskontrolle mit Lieferantenbewertung ergänzt und ein erst kürzlich im ERP-System umgesetztes Reklamationsmanagement für Auswertungen erschlossen werden.

Peter Prinoth sieht viel Potenzial für die Weiterentwicklung: „Das Data Warehouse bietet uns als zentrale Analysebasis vielfältigste Möglichkeiten für den Ausbau unseres Reportings, und wir erschließen ständig neue Datenfelder aus dem ERP-System für diesen Datentopf. Da wir organisatorische Änderungen oder neue fachliche Auswertungen selbst im System umsetzen können, funktioniert unsere Weiterentwicklung sehr schnell und kosteneffizient.“

Augenmerk auf Reportgestaltung zahlt sich aus

Neben dem Aufbau des Data Warehouse mit dem zugehörigen Datenmanagement bildet die Ausgestaltung des Reportings im Frontend den zweiten großen Schwerpunkt des BI-Projekts bei Rothoblaas. Basis dafür ist ein schlüssiges Informationskonzept, das sich gleichermaßen auf die Gestaltung des Backend- als auch des Frontend-Bereichs auswirkt.

Werden beispielsweise zu viele Kennzahlen und Detailinformationen auf Basis der entsprechend benötigten umfangreichen Datencubes in den Berichten abgebildet, sind Performance-Probleme im System absehbar – vor allem in großen Nutzer-Szenarien wie bei Rothoblaas. Moderne Informationssysteme zielen stattdessen darauf ab, dem Nutzer mit gezielten, übersichtlich visualisierten Informationen einen schnellen Überblick über sein Aufgabengebiet zu verschaffen, von dem aus er dann nach Bedarf in tiefere Analysen einsteigen kann. Dieser Aspekt war bei Rothoblaas insbesondere beim Übergang vom vorigen Tabellen-orientierten Reporting mit vielen Detailzahlen in die Welt der dynamischen Reports zu berücksichtigen.

Das Projektteam hat entsprechend viel Augenmerk auf die optimale Balance zwischen Übersichtlichkeit und Detailgrad der Berichte gelegt. Gerade an dieser Stelle profitiert Rothoblaas auch von der großen Projekterfahrung der QUNIS-Berater, wie Peter Prinoth bestätigt: „Die Planung einer passenden BI-Umgebung erfordert viel Know-how und Erfahrung auf unterschiedlichen Ebenen. Mit QUNIS haben wir den richtigen Partner an der Seite, auf dessen Fachwissen und Praxiserfahrung wir uns verlassen können.

Im Frontend-Bereich ist außerdem die Frage der Lizenzkosten ein zentrales Thema, das im Rahmen des Informationskonzepts vorab geklärt werden sollte. Hier ist zu berücksichtigen, wie viele Nutzer heute und in Zukunft zu erwarten sind und welche Anforderungen an das Reporting bestehen.

Mit den Microsoft Reporting Services (SSRS) konnte Rothoblaas den weltweiten Rollout des Vertriebsreportings kosteneffizient realisieren und alle Anforderungen abdecken. Das Werkzeug unterstützt wie gewünscht ein zuverlässiges Standardreporting mit Self-Service-Analysen und mobilem Datenzugriff. Beim weiteren Ausbau wird eventuell ein flexibleres BI-Frontend wie beispielsweise Pyramid Analytics interessant, das Rothoblaas dann einfach gegen die Reporting Services austauschen und auf das Data Warehouse aufsetzen kann.

Der richtige BI-Schritt in die Zukunft

Für Rothoblaas hat sich der Schritt in die zukunftsweisende BI-Welt gelohnt, wie Peter Prinoth festhält: „Die Berichtsplattform mit zentralem Data Warehouse war für uns eine Investition in die Zukunft, die jetzt und auf Dauer Mehrwert bringt. Einige Unternehmen in unserer Region waren am Anfang unseres Projekts noch skeptisch, weil sie eine Data-Warehouse-Lösung für ein Unternehmen unserer Größenordnung für überdimensioniert hielten – inzwischen haben die meisten selbst ähnliche Projekte gestartet, mehrere davon zusammen mit QUNIS, deren guter Ruf sich in Südtirol schnell herumgesprochen hat.“

Mehr zu Rothoblaas: Rothoblaas ist ein multinationales Unternehmen mit Ursprung in den Südtiroler Alpen, welches marktführend in der Entwicklung von technologisch hochwertigen Lösungen für den Holzbau ist. Rothoblaas entwickelt Produkte und Dienstleistungen für die Profi s im Baugewerbe: Holzbauer, Zimmerer, Ingenieure, Architekten und Monteure von Absturzsicherungssystemen. Die Produkte aus der Reihe HOLZ TECHNIC befriedigen zudem alle Anforderungen und Bedürfnisse der Fachhändler von Baumaterialien.

QUNIS Scalable Self Service BI – analytische Datenplattform mit Zukunft

Erstellt am: Mittwoch, 1. Juli 2020 von Monika Düsterhöft

Self Service BI: Der Ruf nach leichten auch von der Fachabteilung zu bedienenden Werkzeugen wurde erhört

Globalisierung, vernetzte Wertschöpfungsketten und nicht zuletzt Ausnahmesituationen wie die Finanz- und Corona-Krise zwingen Unternehmen, immer schneller auf neue Anforderungen zu reagieren. Die Fähigkeit, aus Daten agil Informationen zu generieren, um gute und sichere Entscheidungen zu treffen wird zum wichtigen Überlebens- und Wettbewerbsvorteil.

Der Anspruch an Agilität und Schnelligkeit setzt Fachanwender und Datenexperten unter Druck. Das geforderte Tempo mit den bisherigen BI-Enterprise-Vorgehensmodellen und dem Einsatz traditioneller BI-Tools zu halten, wird immer schwieriger. Aus diesem Leidensdruck heraus wurde in den letzten Jahren der Ruf nach einfacheren Werkzeugen, die sich auch von Fachanwendern bedienen lassen, immer lauter.

Die Softwarehersteller haben darauf mit der Entwicklung von Lösungen reagiert, die sie als „Self Service BI“ anbieten.

Die unter diesem Schlagwort rangierenden Tools und Plattformen umfassen in der Regel ein fachanwenderfreundliches Frontend gepaart mit Funktionen für das Erledigen einfacher Datenmanagementaufgaben. Letztere erlauben es den Nutzern, mehrere Datenquellen zu verbinden oder lokale Daten aus Excel-Dokumenten direkt im Visualisierungstool zu integrieren. Auch können sie Quellen aus dem Internet sofort mit anzapfen.

Self-Service-BI-Werkzeuge eignen sich also aufgrund ihrer sehr guten und anwenderfreundlichen Funktionen bestens dafür, individuelle Lösungen zu realisieren. Sie erlauben einen deutlich weniger komplexen und zeitintensiven Prozess bei der Abstimmung, bei der direkten Umsetzung mithilfe der Datenmanagementfunktionen und bei der unmittelbaren Publikation der Ergebnisse durch anforderungsnahe Anwender.

Jedoch, die Antwort für eine nachhaltige BI-Lösung liegt nicht allein im Frontend

Was bei der Euphorie für Self Service BI in vielen Fällen vergessen wird: Das wirklich komplexe an BI-Lösungen ist nicht die Gestaltung der Berichte und Dashboards im Visualisierungstool. Die weitaus größere Herausforderung liegt in der Aufbereitung von aussagekräftigen und wahrheitsgetreuen Datenräumen als Basis für die Visualisierungen.

Zur Umsetzung der dafür notwendigen, teilweise sehr vielschichtigen Datenmanagementaufgaben verfügen professionelle Datenbanken für Enterprise Data Warehouses und Data Lakes über zahlreiche Spezialfunktionen. Sie ermöglichen die Transformation von Daten, das dauerhafte Monitoring der Datenqualität sowie den möglichst automatisierten Ablauf des Ladens der Daten in den großen Datenspeicher.

Die Frage, die sich nun für Unternehmen stellt, die sowohl Self Service BI ermöglichen als auch Enterprise BI realisieren wollen: Wie setzt man Self Service BI so auf, dass es Hand in Hand mit einer Enterprise-Strategie funktioniert? Zudem haben BI-Initiativen nicht selten zum Ziel, die über Jahre gewachsenen individuellen Reporting-Inseln zu integrieren und Inhalte zu harmonisieren.

Das Geheimnis liegt im Bewusstsein und im Datenmodell

BI-Initiativen können nur gewinnen, wenn Self-Service-BI-Funktionen nicht als eigenständiges Werkzeug gesehen werden, sondern als Speedbooster oder als Ergänzung zum Enterprise Data Warehouse und zum Data Lake. Über die erweiterten Möglichkeiten von Self Service BI in der Visualisierung hinaus sind vor allem die neu gewonnenen Optionen im Datenmanagement für viele Architekturen relevant.

Denn Anforderungen einfach, schnell und agil umzusetzen muss nicht immer heißen, dass dieses Projekt später zwangsläufig in einem gesonderten Werkzeug oder in einem langfristigen Datenchaos endet.

QUNIS bringt den Profi-Boost für Self-Service-BI-Architekturen

Um die Vorteile von Self Service BI und Enterprise BI gleichsam zu nutzen, hat QUNIS den Ansatz des „Scalable Self Service BI“ entwickelt. Dieser ermöglicht schnelle Ergebnisse gepaart mit einem sauber aufgebauten Datenmanagement – ganz bewusst flankiert von Wissenstransfer und Empowerment.

Innerhalb weniger Wochen und mit punktuellem Coaching entstehen per „QUNIS Scalable Self Service BI“ und mit dem Einsatz von Micosoft Power BI komplette BI-Apps. Mit professionellem Design, basierend auf klaren Strukturen und durchgängiger Automatisierung der Prozesse.

  • Ein Self-Service-BI-Projekt bei QUNIS startet stets mit einer kompakten Schulung. Die Vertreter der Fachabteilung lernen die Grundlagen des eingesetzten Tools  kennen. Sie erfahren mehr zu den technischen Details und zur methodischen Vorgehensweise. Zudem bekommen sie beigebracht, wie man eine Datentransformation durchführt, wie man ein Datenmodell richtig aufgebaut und welche Best Practices es gibt.
  • Danach werden in einem meist halbtägigen Anforderungsworkshop die konkrete Problemstellung und die dafür gewünschte Lösung im Hinblick auf einen Self Service Use Case überprüft und der sinnvolle Umfang definiert.
  • Darauf aufbauend entsteht in einem Zeitraum von ca. drei bis zehn Tagen ein Modell, das für die gewünschte Datenmenge passt. Wichtig dabei: Dieses Modell entspricht in Bezug auf Qualität und Professionalität bereits den Kriterien eines Enterprise BI. So werden im Self-Service-BI-Modell etwa die gleichen Namensbezeichnungen und Schlüsselfelder wie in einem Enterprise-Data-Warehouse-Modell genutzt. Ebenso verfügt es über eine Schnittstelle zur Überführung in ein Enterprise BI inklusive einer automatisierten Dokumentation.
  • Anhand des aufgesetzten Self-Service-BI-Modells sehen die Beteiligten, worauf zu achten ist, welche Schritte notwendig sind und wie sich Berichte anfertigen lassen. Diese werden dann in einer Reporting-Mappe zusammengeführt.
  • Um die Lösung im Anschluss selbstständig zu erweitern, empfiehlt es sich zudem über eine Fokus-Schulung Know-how in der Formelsprache DAX (Data Analysis Expressions) anzueignen. So können Fachexperten wie Controller oder Produktionsleiter nachfolgend eigene Kennzahlen entwerfen und umsetzen.

Die mit dem QUNIS Scalable Self Service-Ansatz generierten Self-Service-BI-Lösungen bieten drei ganz zentrale Vorteile: Sie erfordern geringe Investitionskosten, weisen als managed Self-Service-BI eine hohe Qualität und Skalierbarkeit auf und vor allem, sie erfüllen bereits die Standards eines Enterprise Data Warehouse. Hinzu kommt, dass sich die User schon während des Self-Service-BI-Projektes dank entsprechender Schulungsanteile und intensivem Coaching ein umfassendes Prozess- und Technologie-Know-how aneignen.

Von Anfang an ist damit die Brücke für den späteren Transfer in die Enterprise-BI-Strategie gebaut. Sie sind bestens gerüstet, die Weiterentwicklung Ihrer BI-Applikation kompetent zu begleiten und gemeinsam mit den Experten weitere Lösungen aufzubauen. Wie das geht zeigt beispielsweise BOGNER in seinem Praxisbericht.

Oder sprechen Sie uns einfach an KONTAKT

Unser Tipp: Nutzen Sie unsere kostenfreien QUNIS-Webinare und Online-Power-Trainings sowie Schulungsangebote der QUNIS Academy rund um die Self Service BI Plattform „Microsoft Power BI“ und erfahren Sie von unseren Experten aus der Praxis, was für Sie drin steckt.

Data Governance: Schon mal drüber nachgedacht?

Erstellt am: Freitag, 5. Juni 2020 von Monika Düsterhöft

So wichtig für erfolgreiche Data & Analytics Projekte

Daten gelten als Herzstück jedes Unternehmens. Und so gut wie bei jedem steht, nicht zuletzt getrieben durch die aktuellen Entwicklungen, das Thema Digitalisierung ganz weit oben auf der Agenda. Das Regeln von Verfügbarkeit, Integrität und Sicherheit der verwendeten Daten, die sogenannten Data Governance, wird in diesem Zuge jedoch oftmals eher stiefmütterlich behandelt.

Dass dem so ist, mag zum einen daran liegen, dass es sich um ein vergleichsweises neues Thema handelt. Zum anderen ist Data Governancen sehr rechtslastig, wird mit Disziplin, Verwaltung und Aufwand konnotiert und gilt gemeinhin als „trocken und unattraktiv“. Und wie wir alle wissen: Um solche Themen kümmert man sich nicht wirklich gern.

Ein fehlerhafter Umgang mit Daten jedoch kann schnell zu erheblichen Wirtschafts- und Imageschäden führen. Rechtliche Konsequenzen, Bußgelder, Strafen und empfindliche Schadensersatzansprüchen drohen.

Wegducken gilt nicht – Data Governance geht jeden an!

Auf der Hand liegt, wo immer es zu Problemen mit Daten kommt, weißt sich die Gesamtverantwortung direkt der Geschäftsführung und dem Vorstand zu; unter Umständen greift deren Haftungsrisiko sogar bis aufs Privatvermögen durch. Schon allein deswegen sollten das Vorhandensein und konsequente Leben einer Data Governance ein ganz persönliches Anliegen des Top-Managements sein.

Im Gegensatz zur Top-Führungsriege steht der Mitarbeiter, der als ausführendes Organ nach bestem Wissen und Gewissen handelt, bei einer Datenpanne nicht in legaler Verantwortung. Nichtsdestotrotz ist auch sein Handeln oder Nichthandeln von unliebsamen persönlichen Konsequenzen bedroht. Denn selbst eine Panne, die auf Motivation und Engagement basiert kann zu Arbeitsplatzverlust oder zumindest internen Problemen führen. Um diesem Konflikt aus dem Weg zu gehen, kann es sein, dass Mitarbeiter lieber nichts tun bevor sie etwas tun, von dem sie nicht recht wissen, ob sie es dürfen oder nicht. Ineffizienz bis hin zum vollständigen Stillstand von Initiativen sind die Folge für das Unternehmen.

Unbenommen wäre es also förderlich zu wissen, was man am Arbeitsplatz mit welchen Daten tun darf und was nicht. Und zwar sowohl für den normalen Mitarbeiter, als auch für die Führungskräfte. Letzteren fällt in diesem Zusammenhang wohl der undankbarste Part zu: Sie stehen im Kreuzfeuer von Management und Mitarbeitern, müssen delegierte Aufgabenstellungen weitertragen und auf deren Umsetzung bedacht sein.

Kein Data & Analytics Projekt ohne Governance

Betrachtet man Chancen, Möglichkeiten, Risiken und in Zeiten des War of Talents und Fachkräftemangels auch die hohe Notwendigkeit im Hinblick auf Mitarbeiter-Sicherung und Motivation, so sollte keine Data & Analytics Initiative auf- bzw. umgesetzt werden ohne nicht parallel eine entsprechenden Data-Governance-Initiative zu betreiben.

Die gute Nachricht: Das Ganze hört sich schlimmer an als es ist. Vielmehr, eine Data & Analytics Governance ist in überschaubaren und leicht verdaubaren Schritten machbar. Einzige Voraussetzung, die Etappenziele müssen sauber definiert und ein dazu passender Methoden- und Maßnahmenkatalog erstellt worden sein. Auf diesem soliden Fundament lässt sich eine passende Data & Analytics Governance in die Organisation und Prozesse integrieren und die letztlich nachhaltige Umsetzung wird möglich.

QUNIS-Vorgehenskonzept bringt Durchblick, Struktur und Effizienz

Basierend auf Praxis-Erfahrung und Know-how hat QUNIS ein dreistufiges Framework mit insgesamt acht Handlungsfeldern entwickelt, das für Business-Intelligence- und Andvanced-Analytics-Initiativen eine verlässliche Orientierungshilfe für den Aufbau und die Etablierung einer Data Governance stellt.

Auf der ersten Stufe geht es darum, die Zielsetzung festzulegen: Welche Daten gibt es und in welchem Bezug stehen diese zu den rechtlichen Vorgaben bzw. welche Maßnahmen sind konkret daraus abzuleiten? Hier geht es um so wichtige Dinge wie ein gut funktionierendes Risikomanagement und den Blick auf sensible Datenschnittstellen zu Externen. Zudem werden aber auch ganz generell Fragen etwa zur Gewährleistung der Datenqualität behandelt.

Im darauf aufbauenden Bereich von Methoden und Maßnahmen werden rechtliche Vorgaben geklärt: Welche Daten und Prozesse korrespondieren mit welchen rechtlichen Normen wie GDPdU oder DSGVO? Im Fokus stehen Datenzugriffs- und Datenberechtigungskonzepte oder Back-Up-Strategien zur durchgängigen Gewährleistung der Datenverfügbarkeit. Im Sinne des Projektmanagements werden zudem die Vorgehensweisen erarbeitet, also beispielsweise Dokumentationsrichtlinien festgelegt, Guidelines für die Mitarbeiter erarbeitet, Recovery-Pläne und Definition von Messpunkten.

Zu guter Letzt geht es darum, das Erarbeitete in die Organisation und die laufenden Prozesse zu integrieren. Um klare Verantwortlichkeiten definieren zu können, wird das bewährte QUNIS-Rollenmodell herangezogen als Basis für den individuellen Zuschnitt auf konkrete Rahmenbedingungen und Bedürfnisse des jeweiligen Unternehmens. Darauf aufbauend lassen sich schließlich trennscharfe Strukturen herausarbeiten, die jedem betroffenen Teilbereich Verantwortlichkeiten und Zuständigkeiten zuordnen

Denken Sie die Data Governance immer gleich mit!

Es gibt viele gute Gründe dafür, seine Daten im Unternehmen zu schützen bzw. zu sichern und dabei rechtskonform und werteorientiert zu handeln. QUNIS unterstützt Sie dabei, eine ganz individuelle Governance für die Data & Analytics Initiativen in Ihrem Unternehmen umzusetzen und erfolgreich zu steuern. Alles was Sie tun müssen ist uns kontaktieren. Beim Rest begleiten wir Sie kompetent.

Mein Tipp: Besuchen Sie unser kostenfreies QUNIS-Webinar „Data Governance – so machen Sie Ihre BI-, Big-Data- und Advanced-Analytics-Lösung rechtlich und organisatorisch sicher.“ TERMINE UND ANMELDUNG

So arbeiten Sie mit Microsoft Power BI. Siebenteilige Kurzfilmreihe erklärt wie‘s geht!

Erstellt am: Freitag, 1. Mai 2020 von Monika Düsterhöft

Microsoft Power BI – ein mächtiges Tool

Microsoft Power BI ist eine leistungsstarke Business Intelligence Plattform und Analytics-Lösung. Mit Microsoft Power BI kann man sehr schnell Daten aus nicht verbundenen Quellen zusammentragen, analysieren und visualisieren. Anschließend können die erstellten Inhalte auf Dashboards freigegeben und geteilt werden.

Die intuitive Bedienung erlaubt es bereits nach kurzer Einarbeitungszeit verschiedenste Daten zu übersichtlichen, interaktiven Graphiken zu kombinieren. So erstellen Sie aus verstreuten Daten, bedeutsame und interaktive Unternehmens-Insights.

QUNIS Power BI Minis erklären wie‘s geht

In einer siebenteiligen Kurzfilmreihe zeigt unser QUNIS Power BI Spezialist Patrick Eisner Schritt für Schritt, wie Sie mit Microsoft Power BI arbeiten und welche Möglichkeiten die BI-Plattform für Sie bereit hält:

  • Part 1 – Datenintegration
  • Part 2 – Datenvisualisierung
  • Part 3 – Berechtigungen, Hierarchien und Navigation
  • Part 4 – Ein bestehendes Datenmodell erweitern
  • Part 5 – Advanced Visuals
  • Part 6 – Mobile Devices
  • Part 7 – Power BI Web Portal

Alle QUNIS Power BI Minis finden Sie direkt in unserer QUNIS MEDIATHEK oder  im QUNIS YOUTUBE KANAL

Offen für viele verschiedene Datenquellen

Microsoft Power BI eröffnet die Möglichkeit verschiedene Datenquellen in Office 365 einzubinden. Die Auswahl an möglichen Datenquellen ist groß und wird stetig erweitert. Folgende Kategorien zählen dazu:

  • Dateien: Excel, Text, XML, JSON, Ordner, SharePoint Ordner
  • Datenbanken: SQL Server, Access, Oracle oder SAP HANA
  • Power BI: Datenmodelle, die mit Hilfe von Power BI Desktop erstellt wurden
  • Azure: Azure SQL-Datenbank, Azure SQL Data Warehouse oder Azure Analysis Services-Datenbank
  • Online-Dienste: Aktuell Konnektoren gibt es für mehr als 59 verschiedene Clouddienste wie besispielsweise SharePoint-Online Liste, Salesforce-Berichte, Google Analytics
  • Sonstige: Diese Kategorie umfasst weitere Datentypen wie Vertica (Beta), Web, SharePoint Liste, OData-Feed, Active Directory, Microsoft Exchange, Hadoop-Datei (HDFS), Spark, R-Skript, ODBC, OLE DB, Leere Abfragen

Mein Tipp: Die QUNIS Academy bietet ein breites Spektrum an Schulungen und Trainings. Nutzen Sie diese und lernen Sie die Bandbreite der mächtigen BI-lattform einsetzen und nutzen. Hier finden Sie alle aktuellen Themen und Termine: QUNIS ACADEMY