Archiv für die Kategorie Business Intelligence

QUNIS Scalable Self Service BI – analytische Datenplattform mit Zukunft

Erstellt am: Mittwoch, 1. Juli 2020 von Monika Düsterhöft

Self Service BI: Der Ruf nach leichten auch von der Fachabteilung zu bedienenden Werkzeugen wurde erhört

Globalisierung, vernetzte Wertschöpfungsketten und nicht zuletzt Ausnahmesituationen wie die Finanz- und Corona-Krise zwingen Unternehmen, immer schneller auf neue Anforderungen zu reagieren. Die Fähigkeit, aus Daten agil Informationen zu generieren, um gute und sichere Entscheidungen zu treffen wird zum wichtigen Überlebens- und Wettbewerbsvorteil.

Der Anspruch an Agilität und Schnelligkeit setzt Fachanwender und Datenexperten unter Druck. Das geforderte Tempo mit den bisherigen BI-Enterprise-Vorgehensmodellen und dem Einsatz traditioneller BI-Tools zu halten, wird immer schwieriger. Aus diesem Leidensdruck heraus wurde in den letzten Jahren der Ruf nach einfacheren Werkzeugen, die sich auch von Fachanwendern bedienen lassen, immer lauter.

Die Softwarehersteller haben darauf mit der Entwicklung von Lösungen reagiert, die sie als „Self Service BI“ anbieten.

Die unter diesem Schlagwort rangierenden Tools und Plattformen umfassen in der Regel ein fachanwenderfreundliches Frontend gepaart mit Funktionen für das Erledigen einfacher Datenmanagementaufgaben. Letztere erlauben es den Nutzern, mehrere Datenquellen zu verbinden oder lokale Daten aus Excel-Dokumenten direkt im Visualisierungstool zu integrieren. Auch können sie Quellen aus dem Internet sofort mit anzapfen.

Self-Service-BI-Werkzeuge eignen sich also aufgrund ihrer sehr guten und anwenderfreundlichen Funktionen bestens dafür, individuelle Lösungen zu realisieren. Sie erlauben einen deutlich weniger komplexen und zeitintensiven Prozess bei der Abstimmung, bei der direkten Umsetzung mithilfe der Datenmanagementfunktionen und bei der unmittelbaren Publikation der Ergebnisse durch anforderungsnahe Anwender.

Jedoch, die Antwort für eine nachhaltige BI-Lösung liegt nicht allein im Frontend

Was bei der Euphorie für Self Service BI in vielen Fällen vergessen wird: Das wirklich komplexe an BI-Lösungen ist nicht die Gestaltung der Berichte und Dashboards im Visualisierungstool. Die weitaus größere Herausforderung liegt in der Aufbereitung von aussagekräftigen und wahrheitsgetreuen Datenräumen als Basis für die Visualisierungen.

Zur Umsetzung der dafür notwendigen, teilweise sehr vielschichtigen Datenmanagementaufgaben verfügen professionelle Datenbanken für Enterprise Data Warehouses und Data Lakes über zahlreiche Spezialfunktionen. Sie ermöglichen die Transformation von Daten, das dauerhafte Monitoring der Datenqualität sowie den möglichst automatisierten Ablauf des Ladens der Daten in den großen Datenspeicher.

Die Frage, die sich nun für Unternehmen stellt, die sowohl Self Service BI ermöglichen als auch Enterprise BI realisieren wollen: Wie setzt man Self Service BI so auf, dass es Hand in Hand mit einer Enterprise-Strategie funktioniert? Zudem haben BI-Initiativen nicht selten zum Ziel, die über Jahre gewachsenen individuellen Reporting-Inseln zu integrieren und Inhalte zu harmonisieren.

Das Geheimnis liegt im Bewusstsein und im Datenmodell

BI-Initiativen können nur gewinnen, wenn Self-Service-BI-Funktionen nicht als eigenständiges Werkzeug gesehen werden, sondern als Speedbooster oder als Ergänzung zum Enterprise Data Warehouse und zum Data Lake. Über die erweiterten Möglichkeiten von Self Service BI in der Visualisierung hinaus sind vor allem die neu gewonnenen Optionen im Datenmanagement für viele Architekturen relevant.

Denn Anforderungen einfach, schnell und agil umzusetzen muss nicht immer heißen, dass dieses Projekt später zwangsläufig in einem gesonderten Werkzeug oder in einem langfristigen Datenchaos endet.

QUNIS bringt den Profi-Boost für Self-Service-BI-Architekturen

Um die Vorteile von Self Service BI und Enterprise BI gleichsam zu nutzen, hat QUNIS den Ansatz des „Scalable Self Service BI“ entwickelt. Dieser ermöglicht schnelle Ergebnisse gepaart mit einem sauber aufgebauten Datenmanagement – ganz bewusst flankiert von Wissenstransfer und Empowerment.

Innerhalb weniger Wochen und mit punktuellem Coaching entstehen per „QUNIS Scalable Self Service BI“ und mit dem Einsatz von Micosoft Power BI komplette BI-Apps. Mit professionellem Design, basierend auf klaren Strukturen und durchgängiger Automatisierung der Prozesse.

  • Ein Self-Service-BI-Projekt bei QUNIS startet stets mit einer kompakten Schulung. Die Vertreter der Fachabteilung lernen die Grundlagen des eingesetzten Tools  kennen. Sie erfahren mehr zu den technischen Details und zur methodischen Vorgehensweise. Zudem bekommen sie beigebracht, wie man eine Datentransformation durchführt, wie man ein Datenmodell richtig aufgebaut und welche Best Practices es gibt.
  • Danach werden in einem meist halbtägigen Anforderungsworkshop die konkrete Problemstellung und die dafür gewünschte Lösung im Hinblick auf einen Self Service Use Case überprüft und der sinnvolle Umfang definiert.
  • Darauf aufbauend entsteht in einem Zeitraum von ca. drei bis zehn Tagen ein Modell, das für die gewünschte Datenmenge passt. Wichtig dabei: Dieses Modell entspricht in Bezug auf Qualität und Professionalität bereits den Kriterien eines Enterprise BI. So werden im Self-Service-BI-Modell etwa die gleichen Namensbezeichnungen und Schlüsselfelder wie in einem Enterprise-Data-Warehouse-Modell genutzt. Ebenso verfügt es über eine Schnittstelle zur Überführung in ein Enterprise BI inklusive einer automatisierten Dokumentation.
  • Anhand des aufgesetzten Self-Service-BI-Modells sehen die Beteiligten, worauf zu achten ist, welche Schritte notwendig sind und wie sich Berichte anfertigen lassen. Diese werden dann in einer Reporting-Mappe zusammengeführt.
  • Um die Lösung im Anschluss selbstständig zu erweitern, empfiehlt es sich zudem über eine Fokus-Schulung Know-how in der Formelsprache DAX (Data Analysis Expressions) anzueignen. So können Fachexperten wie Controller oder Produktionsleiter nachfolgend eigene Kennzahlen entwerfen und umsetzen.

Die mit dem QUNIS Scalable Self Service-Ansatz generierten Self-Service-BI-Lösungen bieten drei ganz zentrale Vorteile: Sie erfordern geringe Investitionskosten, weisen als managed Self-Service-BI eine hohe Qualität und Skalierbarkeit auf und vor allem, sie erfüllen bereits die Standards eines Enterprise Data Warehouse. Hinzu kommt, dass sich die User schon während des Self-Service-BI-Projektes dank entsprechender Schulungsanteile und intensivem Coaching ein umfassendes Prozess- und Technologie-Know-how aneignen.

Von Anfang an ist damit die Brücke für den späteren Transfer in die Enterprise-BI-Strategie gebaut. Sie sind bestens gerüstet, die Weiterentwicklung Ihrer BI-Applikation kompetent zu begleiten und gemeinsam mit den Experten weitere Lösungen aufzubauen. Interessiert? Sprechen Sie uns einfach an KONTAKT

Unser Tipp: Nutzen Sie unsere kostenfreien QUNIS-Webinare und Online-Power-Trainings sowie Schulungsangebote der QUNIS Academy rund um die Self Service BI Plattform „Microsoft Power BI“ und erfahren Sie von unseren Experten aus der Praxis, was für Sie drin steckt.

Data Governance: Schon mal drüber nachgedacht?

Erstellt am: Freitag, 5. Juni 2020 von Monika Düsterhöft

So wichtig für erfolgreiche Data & Analytics Projekte

Daten gelten als Herzstück jedes Unternehmens. Und so gut wie bei jedem steht, nicht zuletzt getrieben durch die aktuellen Entwicklungen, das Thema Digitalisierung ganz weit oben auf der Agenda. Das Regeln von Verfügbarkeit, Integrität und Sicherheit der verwendeten Daten, die sogenannten Data Governance, wird in diesem Zuge jedoch oftmals eher stiefmütterlich behandelt.

Dass dem so ist, mag zum einen daran liegen, dass es sich um ein vergleichsweises neues Thema handelt. Zum anderen ist Data Governancen sehr rechtslastig, wird mit Disziplin, Verwaltung und Aufwand konnotiert und gilt gemeinhin als „trocken und unattraktiv“. Und wie wir alle wissen: Um solche Themen kümmert man sich nicht wirklich gern.

Ein fehlerhafter Umgang mit Daten jedoch kann schnell zu erheblichen Wirtschafts- und Imageschäden führen. Rechtliche Konsequenzen, Bußgelder, Strafen und empfindliche Schadensersatzansprüchen drohen.

Wegducken gilt nicht – Data Governance geht jeden an!

Auf der Hand liegt, wo immer es zu Problemen mit Daten kommt, weißt sich die Gesamtverantwortung direkt der Geschäftsführung und dem Vorstand zu; unter Umständen greift deren Haftungsrisiko sogar bis aufs Privatvermögen durch. Schon allein deswegen sollten das Vorhandensein und konsequente Leben einer Data Governance ein ganz persönliches Anliegen des Top-Managements sein.

Im Gegensatz zur Top-Führungsriege steht der Mitarbeiter, der als ausführendes Organ nach bestem Wissen und Gewissen handelt, bei einer Datenpanne nicht in legaler Verantwortung. Nichtsdestotrotz ist auch sein Handeln oder Nichthandeln von unliebsamen persönlichen Konsequenzen bedroht. Denn selbst eine Panne, die auf Motivation und Engagement basiert kann zu Arbeitsplatzverlust oder zumindest internen Problemen führen. Um diesem Konflikt aus dem Weg zu gehen, kann es sein, dass Mitarbeiter lieber nichts tun bevor sie etwas tun, von dem sie nicht recht wissen, ob sie es dürfen oder nicht. Ineffizienz bis hin zum vollständigen Stillstand von Initiativen sind die Folge für das Unternehmen.

Unbenommen wäre es also förderlich zu wissen, was man am Arbeitsplatz mit welchen Daten tun darf und was nicht. Und zwar sowohl für den normalen Mitarbeiter, als auch für die Führungskräfte. Letzteren fällt in diesem Zusammenhang wohl der undankbarste Part zu: Sie stehen im Kreuzfeuer von Management und Mitarbeitern, müssen delegierte Aufgabenstellungen weitertragen und auf deren Umsetzung bedacht sein.

Kein Data & Analytics Projekt ohne Governance

Betrachtet man Chancen, Möglichkeiten, Risiken und in Zeiten des War of Talents und Fachkräftemangels auch die hohe Notwendigkeit im Hinblick auf Mitarbeiter-Sicherung und Motivation, so sollte keine Data & Analytics Initiative auf- bzw. umgesetzt werden ohne nicht parallel eine entsprechenden Data-Governance-Initiative zu betreiben.

Die gute Nachricht: Das Ganze hört sich schlimmer an als es ist. Vielmehr, eine Data & Analytics Governance ist in überschaubaren und leicht verdaubaren Schritten machbar. Einzige Voraussetzung, die Etappenziele müssen sauber definiert und ein dazu passender Methoden- und Maßnahmenkatalog erstellt worden sein. Auf diesem soliden Fundament lässt sich eine passende Data & Analytics Governance in die Organisation und Prozesse integrieren und die letztlich nachhaltige Umsetzung wird möglich.

QUNIS-Vorgehenskonzept bringt Durchblick, Struktur und Effizienz

Basierend auf Praxis-Erfahrung und Know-how hat QUNIS ein dreistufiges Framework mit insgesamt acht Handlungsfeldern entwickelt, das für Business-Intelligence- und Andvanced-Analytics-Initiativen eine verlässliche Orientierungshilfe für den Aufbau und die Etablierung einer Data Governance stellt.

Auf der ersten Stufe geht es darum, die Zielsetzung festzulegen: Welche Daten gibt es und in welchem Bezug stehen diese zu den rechtlichen Vorgaben bzw. welche Maßnahmen sind konkret daraus abzuleiten? Hier geht es um so wichtige Dinge wie ein gut funktionierendes Risikomanagement und den Blick auf sensible Datenschnittstellen zu Externen. Zudem werden aber auch ganz generell Fragen etwa zur Gewährleistung der Datenqualität behandelt.

Im darauf aufbauenden Bereich von Methoden und Maßnahmen werden rechtliche Vorgaben geklärt: Welche Daten und Prozesse korrespondieren mit welchen rechtlichen Normen wie GDPdU oder DSGVO? Im Fokus stehen Datenzugriffs- und Datenberechtigungskonzepte oder Back-Up-Strategien zur durchgängigen Gewährleistung der Datenverfügbarkeit. Im Sinne des Projektmanagements werden zudem die Vorgehensweisen erarbeitet, also beispielsweise Dokumentationsrichtlinien festgelegt, Guidelines für die Mitarbeiter erarbeitet, Recovery-Pläne und Definition von Messpunkten.

Zu guter Letzt geht es darum, das Erarbeitete in die Organisation und die laufenden Prozesse zu integrieren. Um klare Verantwortlichkeiten definieren zu können, wird das bewährte QUNIS-Rollenmodell herangezogen als Basis für den individuellen Zuschnitt auf konkrete Rahmenbedingungen und Bedürfnisse des jeweiligen Unternehmens. Darauf aufbauend lassen sich schließlich trennscharfe Strukturen herausarbeiten, die jedem betroffenen Teilbereich Verantwortlichkeiten und Zuständigkeiten zuordnen

Denken Sie die Data Governance immer gleich mit!

Es gibt viele gute Gründe dafür, seine Daten im Unternehmen zu schützen bzw. zu sichern und dabei rechtskonform und werteorientiert zu handeln. QUNIS unterstützt Sie dabei, eine ganz individuelle Governance für die Data & Analytics Initiativen in Ihrem Unternehmen umzusetzen und erfolgreich zu steuern. Alles was Sie tun müssen ist uns kontaktieren. Beim Rest begleiten wir Sie kompetent.

Mein Tipp: Besuchen Sie unser kostenfreies QUNIS-Webinar „Data Governance – so machen Sie Ihre BI-, Big-Data- und Advanced-Analytics-Lösung rechtlich und organisatorisch sicher.“ TERMINE UND ANMELDUNG

So arbeiten Sie mit Microsoft Power BI. Siebenteilige Kurzfilmreihe erklärt wie‘s geht!

Erstellt am: Freitag, 1. Mai 2020 von Monika Düsterhöft

Microsoft Power BI – ein mächtiges Tool

Microsoft Power BI ist eine leistungsstarke Business Intelligence Plattform und Analytics-Lösung. Mit Microsoft Power BI kann man sehr schnell Daten aus nicht verbundenen Quellen zusammentragen, analysieren und visualisieren. Anschließend können die erstellten Inhalte auf Dashboards freigegeben und geteilt werden.

Die intuitive Bedienung erlaubt es bereits nach kurzer Einarbeitungszeit verschiedenste Daten zu übersichtlichen, interaktiven Graphiken zu kombinieren. So erstellen Sie aus verstreuten Daten, bedeutsame und interaktive Unternehmens-Insights.

QUNIS Power BI Minis erklären wie‘s geht

In einer siebenteiligen Kurzfilmreihe zeigt unser QUNIS Power BI Spezialist Patrick Eisner Schritt für Schritt, wie Sie mit Microsoft Power BI arbeiten und welche Möglichkeiten die BI-Plattform für Sie bereit hält:

  • Part 1 – Datenintegration
  • Part 2 – Datenvisualisierung
  • Part 3 – Berechtigungen, Hirarchien und Navigation
  • Part 4 – Ein bestehendes Datenmodell erweitern
  • Part 5 – Advanced Visuals
  • Part 6 – Mobile Devices
  • Part 7 – Power BI Web Portal

Alle QUNIS Power BI Minis finden Sie direkt im QUNIS YOUTUBE KANAL

Offen für viele verschiedene Datenquellen

Microsoft Power BI eröffnet die Möglichkeit verschiedene Datenquellen in Office 365 einzubinden. Die Auswahl an möglichen Datenquellen ist groß und wird stetig erweitert. Folgende Kategorien zählen dazu:

  • Dateien: Excel, Text, XML, JSON, Ordner, SharePoint Ordner
  • Datenbanken: SQL Server, Access, Oracle oder SAP HANA
  • Power BI: Datenmodelle, die mit Hilfe von Power BI Desktop erstellt wurden
  • Azure: Azure SQL-Datenbank, Azure SQL Data Warehouse oder Azure Analysis Services-Datenbank
  • Online-Dienste: Aktuell Konnektoren gibt es für mehr als 59 verschiedene Clouddienste wie besispielsweise SharePoint-Online Liste, Salesforce-Berichte, Google Analytics
  • Sonstige: Diese Kategorie umfasst weitere Datentypen wie Vertica (Beta), Web, SharePoint Liste, OData-Feed, Active Directory, Microsoft Exchange, Hadoop-Datei (HDFS), Spark, R-Skript, ODBC, OLE DB, Leere Abfragen

Mein Tipp: Die QUNIS Academy bietet ein breites Spektrum an Schulungen und Trainings. Nutzen Sie diese und lernen Sie die Bandbreite der mächtigen BI-lattform einsetzen und nutzen. Hier finden Sie alle aktuellen Themen und Termine: QUNIS ACADEMY

the factlights 2020: Die zentrale Erhebung zum Stand von Data & Analytics

Erstellt am: Mittwoch, 18. März 2020 von Monika Düsterhöft

Die Digitalisierung verändert unsere Arbeitswelt in einer rasanten Geschwindigkeit. Und auch die aktuelle Krise zeigt, was Digitalisierung und Datenarbeit zu leisten vermögen. Doch wo stehen wir aktuell? Welche Prozesse und Geschäftsmodelle wandeln sich im Unternehmen? Was bedeutet dies für unseren Arbeitsalltag? Digitalisierung ohne Wenn und Aber? Diese und weitere Fragen möchten wir im Rahmen einer Studie klären und die daraus resultierenden Erkenntnisse und Empfehlungen mit Ihnen teilen.

Machen Sie mit bei the factlights 2020 – die zentrale Erhebung zum Stand von Data & Analytics im deutschsprachigen Raum. 


Alle Teilnehmer der ONLINE-UMFRAGE erhalten ein exklusives Management Summary und die Möglichkeit auf attraktive Gewinne, wie einen E-Scooter, Taschen von ‚The North Face‘ oder einen 10 Euro Amazon-Gutschein als Sofort-Dankeschön.

Die Studie hinterfragt: Welche Prozesse und Geschäftsmodelle wurden umgestaltet? Was ist noch pure Vision, was in der Planung und was bereits gelebte Praxis? Was passiert bewusst und was eher unterbewusst? Welche Umstände halten Unternehmen und Mitarbeiter davon ab, die Möglichkeiten moderner Datenarbeit auszuschöpfen? Wo liegen Ängste, Sorgen und Nöte? Wie wird diesen begegnet? Was wird vorausgesetzt und was erwartet? Und wie soll es idealerweise weitergehen?

the factlights 2020 ist eine Initiative der QUNIS

Gemeinsam mit den Partnern CA Controller Akademie, HEUSSEN, Liebich & Partner, QUNIS und WTS ITAX wird im Zeitraum von März bis Mitte Juni 2020 die großangelegte Online-Umfrage the factlights 2020 – About Datat & Analytics Reality durchgeführt. Es geht um eine Bestandsaufnahme dazu, ob und wo Digitalisierung & Co. im Arbeitsalltag der Fachbereiche angekommen sind. In mittelständischen und Großunternehmen. Befragt werden sowohl Leitungsebene als auch Mitarbeiter aus allen Branchen und Bereichen. Angefangen von Finance, Accounting, Controlling, Sales und Marketing bis hin zu IT, Logistik und HR.

Trend-Artikel, Fachbeiträge, Tipps, Studien, Downloads und mehr

Auf the factlights informieren führende Unternehmen verschiedenster Disziplinen und Branchen zu aktuellen Herausforderungen, Stand von Forschung, Lehre, Markt und Technologie. Ganzjährig und aus den verschiedensten Blickwinkeln des Marktes. Hier geht‘s zu WWW.THE-FACTLIGHTS.DE

PUREN Pharma: Effiziente Prozesse und Datenanalysen im Web-Portal mit QUNIS

Erstellt am: Donnerstag, 12. März 2020 von Monika Düsterhöft

Das erfolgreiche Pharmaunternehmen PUREN Pharma hat mit Hilfe der QUNIS digitale End-to-End Geschäftsprozesse umgesetzt, zu denen auch fortgeschrittene Analysen mit zahlreichen internen und externen Datenarten gehören. Das spart viel Zeit und sichert die hohe Qualität von Prozessen und Informationen.

Wir haben mit QUNIS unsere komplexen Geschäftsprozesse unternehmensweit standardisiert und automatisiert. Basis ist ein zentrales Informations- und Analyse-Portal, in das wir jederzeit weitere Nutzer und Datenquellen oder neue On-Premise- und Cloud-Technologien einbinden können.

Christoph Gmeiner,
Teamlead Data Science & Business Intelligence,
PUREN Pharma GmbH & Co. KG

Die Anforderung: Umfangreiche Rechnungsbearbeitung

Generika von PUREN tragen entscheidend dazu bei, dass hochwertige Arzneimittel für jeden bezahlbar bleiben. In diesem Rahmen hat PUREN zudem zahlreiche Rabattverträge mit Krankenkassen abgeschlossen. Die Verwaltung der Verträge und der einzelnen Abschlagszahlungen an die Krankenkassen wurde für das erfolgreiche Pharmaunternehmen jedoch immer komplizierter.

Problematisch war vor allem, dass in einzeln geführten Excel-Listen der direkte Bezug zwischen den in den Apotheken getätigten Umsätzen und den monatlich, quartalsweise oder jährlich verrechneten Abschlagszahlungen an die Krankenkassen fehlte. Bei bundesweiten Verträgen mit rund 150 Krankenkassen, in denen u.a. unterschiedliche Abrechnungs-Zyklen, Rabatte und Dateiformate der Kassen zu berücksichtigen waren, entstand erheblicher manueller Aufwand für die Erfassung und Bearbeitung der Daten in einer Vielzahl von Excel-Dateien.

Das zuständige Team Data Science & Business Intelligence wollte den Prozess daher automatisieren und suchte nach einer Lösung, die einen einfach steuerbaren Freigabeworkflow für die Rechnungsbearbeitung mit einer zentralen Datenhaltung und Rechnungsprüfung im Backend verbindet. Die Systemlösung sollte flexibel und nach Bedarf skalierbar sein, um die wachsenden Anforderungen des Pharmaunternehmens dauerhaft abdecken zu können.

Die Lösung: Einfach steuerbare Prozess und Analyseplattform

Mit der Unterstützung von QUNIS hat PUREN seine ideale Lösung für anspruchsvolle Geschäftsprozesse gefunden und implementiert. Das Projektteam hat im ersten Schritt eine prozessorientierte BI-Plattform für die Bearbeitung der Abschlagsrechnungen realisiert und diese dann in Folgeprojekten systematisch zum umfassenden Portal für alle Fachbereiche ausgebaut.

Grundlage der umgesetzten Informations- und Analyseprozesse ist ein zentrales Data Warehouse auf Basis des Microsoft SQL Servers. Für die Auswertung der Daten werden je nach Bedarf OLAP-Analysen mit den Microsoft Analysis Services und Power BI sowie ML-Funktionalität (Machine Learning) aus der Cloud genutzt.

Als wesentlicher Erfolgsfaktor des Projekts hat sich der Einsatz eines anwenderfreundlichen Web-Frontends basierend  auf GAPTEQ erwiesen. Durch das einfache Handling der Software konnte das interne Projektteam von PUREN nach der anfänglichen Unterstützung durch QUNIS schnell eigenständig weitere Module umsetzen. Inzwischen sind neben einigen Detail-Anwendungen vor allem drei zentrale Geschäftsprozesse in GAPTEQ abgebildet:

1. Transparenter Prüf- und Freigabeworkflow für Abschlagsrechnungen

Was die Sachbearbeiter in der Buchhaltung früher einzeln in Excel und auf Papier erledigen mussten, läuft heute größtenteils automatisiert. Abschlagsrechnungen der Krankenkassen in verschiedensten Dateiformaten werden maschinell in GAPTEQ eingelesen und vom System geprüft. Die integrierte Power BI-Datenbank gleicht dafür Umsatz- und Absatzdaten sowie bereits geleistete Abschlagszahlungen, die per Schnittstelle aus dem ERP-System importiert werden, mit den Rechnungsdaten ab.

Automatisierte Datenströme sorgen für zuverlässige Ergebnisse, auf deren Basis dann der Workflow in GAPTEQ angesteuert wird. Gemäß der hinterlegten Matrix, z.B. je nach Höhe der Zahlungssumme, gelangt die Rechnung nach Freigabe durch die Sachbearbeiter oder ihre Vorgesetzten zur Zahlung an die Abteilungen Customer Service und die Finanzbuchahltung. Das Tracking und die Bearbeitung der zahlreichen Rabattverträge konnte PUREN so in einem übersichtlichen Standard-Workflow mit den Aktionen „Eingabe, Prüfung, Signatur, Zahlung“ umsetzen. Die Mitarbeiter der verschiedenen Abteilungen werden im anwenderfreundlichen Web-Portal sicher durch ihr Tagesgeschäft geführt, während aufwändige Arbeitsroutinen wie Datenimport, Berechnungen, Datenabgleich und Validierung automatisch im leistungsstarken Backend ablaufen.

2. Präziser Forecast für langwierige Bestell- und Lieferketten

Arzneimittel müssen für die Patienten jederzeit in ausreichender Menge verfügbar sein – in der globalisierten Pharmabranche sind jedoch lange Bestell- und Lieferketten üblich. So sind für Produkte, die PUREN Pharma von seiner indischen Muttergesellschaft bezieht, Vorlaufzeiten von bis zu sechs Monaten einzuplanen. Ein möglichst präziser Forecast der erwarteten Absatzzahlen als Grundlage für punktgenaue Besellungen ist daher erfolgsentscheidend.

Im Rahmen des „Tender Managements“ hat das interne BI-Team dafür eine Plattform für Planung und Forecast realisiert, die sich vom Vertrieb über das Bestands und Produkmanagement bis zum Einkauf durchzieht. Durch maschinell erzeugte Vorschlagswerte erreicht PUREN dabei eine sehr hohe Forecast-Genauigkeit. Die Vorschlagswerte werden mit Machine-Learning-Funktionalität aus der Cloud in drei verschiedenen Algorithmen berechnet.

Neben den historischen ERP-Daten fließen u.a. auch externe Marktdaten aus den Apotheken in die Kalkulationen ein. Die Planer können die Vorschlagswerte in ihren Planmasken dann übernehmen oder manuell anpassen. Durch übersichtlich visualierte Berichte, die z.B. die Entwicklung der Umsatzdaten und Marktanteile zeigen, werden sie bei ihrer Entscheidungsfindung unterstützt und können gegebenfalls Abweichungen vom Vorschlag fundiert herleiten und begründen.

Während früher Produktprognosen in Tausenden von Excel-Dateien gepflegt wurden, wird der Forecast heute in der leistungsfähigen Systemumgebung effizient und zuverlässig erstellt und täglich aktualisiert. Das Supply Chain Management kann für seine monatlichen Bestellungen auf sehr präzise Verkaufsprognosen im Portal zugreifen.

3. Strategische und operative Steuerung der Produktlaunches

Die Lösung unterstützt zudem sämtliche Prozesse rund um die Portfolio-Planung und die Einführung neuer Produkte. Sowohl die Entscheidungsfindung als auch die Umsetzung von Produkt-Launches wird dabei mit allen involvierten Fachbereichen in der einheitlichen Systemumgebung gesteuert. Da es sich um langfristige Projekte handelt, sind hier vor allem der hohe Standardisierungsgrad und die nachvollziehbare systemgestützte Dokumentation entscheidende Vorteile. Die Systemlösung reduziert damit die Risiken durch Spezialwissen, das an einzelne Mitarbeiter gebunden ist, und fördert
stattdessen die unternehmensweite Zusammenarbeit im mehrjährigen Projekt durch standardisierte Prozesse und klar definierte Workflows.

Der Launching-Prozess startet bei PUREN mit dem Monitoring auslaufender Patente. Der Zeithorizont bis zum Patent-Verfall der überwachten Produkte beträgt im Schnitt fünf bis sechs Jahre. Um erfolgsversprechende Kandidaten für die eigene Generika-Produktpalette zu ermitteln, werden dabei im System Business Cases durchgespielt und Szenarien mit vielfältigen Annahmen gebildet. Typische Parameter sind beispielsweise Marktdaten zu Absatz und Umsatz in den Apotheken, mögliche Verpackungsgrößen, verschiedene Rabattverträge, Zertifizierungs- und QM-Kosten, usw. Durch die mächtige Analyse-Power im Backend können die Fachanwender im Verlauf der Zeit auch jederzeit Szenarien mit veränderten Rahmenbedingungen oder Auswertungen der „Pipeline“ auf Knopfdruck erstellen.

Die Entscheidung für einen Produktlaunch fällt so auf der Basis genauer Zahlen und Fakten. Die operative Umsetzung eines Launches, der sich wiederum über rund 18 Monate ziehen kann, wird dann ebenfalls in der Systemlösung gesteuert und dokumentiert. Ab diesen Zeitpunkt wird das Projekt zu einem unternehmensweiten Workflow- Thema. GAPTEQ sorgt als Arbeitsumgebung mit transparenten Abläufen und Alerts für die sichere und effiziente Abwicklung des komplexen Prozesses. Alle Abteilungen arbeiten dabei mit einheitlichen Material- Stammdaten aus dem zugrundeliegenden Data Warehouse.

Die Vorteile: Transparenz, Effizienz und Qualität gesteigert

PUREN Pharma hat mit seiner flexiblen BI-Lösung zentrale Geschäftsprozesse automatisiert. Durch die Gestaltung digitalisierter End-to-End-Prozesse und die Integration unterschiedlichster Datenformen wurden die Effizienz und Qualität von Abläufen und Informationen erheblich gesteigert. Individuelle Anforderungen des Pharmaunternehmens konnten dabei flexibel in einem standardisierten Microsoft-Umfeld abgebildet werden. Entstanden ist ein unternehmensweites Portal für alle Nutzergruppen und verschiedene Themen.

Ein wesentlicher Vorteil ist die anwenderorientierte Nutzeroberfläche. GAPTEQ dient sowohl als einfach bedienbares Web-Frontend für die leistungsstarke Analyse-Architektur und unterstützt zugleich mit dezidierter Workflow- Funktionalität die unternehmensweite Zusammenarbeit und Kommunikation. Sämtliche Nutzer arbeiten dabei auf einer zentralen Datenbasis, und sämtliche Eingaben sind nachvollziehbar im System dokumentiert.

Das Projektteam von PUREN kann die Systemlösung jederzeit selbst weiter ausbauen, verschiedenste Daten integrieren, Eingabe-Formulare und Reports gestalten und Workflows mit dezidierten User-Berechtigungen definieren. Im nächsten Schritt sollen Pozesse für die Vertragsverwaltung, die Einkaufspreis-Steuerung und das Qualitätsmanagement umgesetzt werden. Die Microsoft Standardlösung, die bereits heute On-premise- und Cloud-Produkte in einer Hybrid-Architektur kombiniert, gewährleistet dabei einen jederzeit bedarfsgerecht skalierbaren und kosteneffizienten Systemausbau.

Die Projekt-Highlights

  • Komplexe Geschäftsprozesse digitalisiert, automatisiert und standardisiert
  • Transparente Workflows, aktive Nutzerführung mit Warnfunktionen
  • Anwenderfreundliche Nutzeroberfläche für ausgefeilte BI- und MLArchitektur
  • Schnelle Analyse und übersichtliche Visualisierung von Daten
  • Flexible Integration diverser Vorsysteme und Dateiformen
  • Effiziente und sichere Rechnungsprüfung und -Bearbeitung
  • Präziser Forecast mit maschinellen Vorschlagswerten
  • Sichere stragische und operative Steuerung mehrjähriger Launching-Projekte
  • Einheitliches Web-Portal mit zentraler Datenbasis für alle Fachbereiche
  • Valide Daten und Ergebnisse durch Automatisierung
  • Excel-Insellösungen reduziert
  • Investitionssichere, einfach skalierbare Standardsoftware

 

Mehr zu PUREN Pharma: Als deutsches Traditionsunternehmen mit einem über Jahrzehnte gewachsenen Produktportfolio für Praxis, Klinik und Selbstmedikation stellt PUREN die Weichen als ein zukunftsorientierter Partner im Gesundheitswesen. Mit über 120 kostengünstigen Produkten in Topqualität für den Einsatz in der Praxis, Klinik und Selbstmedikation bietet PUREN ein umfassendes, etabliertes Spektrum für fast alle relevanten Therapieoptionen. Durch umfassende Rabattverträge ist PUREN dabei ein starker Partner für Ärzte, Apotheken, Krankenkassen und Patienten zum Erhalt der Ökonomie im Gesundheitswesen. Es ist das erklärte Ziel von PUREN, durch hochwertige, preisgünstige Arzneimittel zur Gesunderhaltung aller Menschen beizutragen.

Was Data & Analytics Verantwortliche bewegt – vier Themen, die Sie dieses Jahr beachten sollten.

Erstellt am: Dienstag, 18. Februar 2020 von Monika Düsterhöft

I. Voraussetzungen für den Business Value schaffen

Der Hype um BI ist abgeflacht, keiner stellt ihre Bedeutung mehr in Frage. Man weiß, die Technologien funktionieren. Die Unternehmen sind gerüstet, Budgets sind eingestellt. Genügend Erfahrungswerte und Best Practices sind vorhanden. Die große Herausforderung liegt jetzt darin, die vorhandenen Konzepte in Projekte zu gießen, die tatsächlich den größten und nachhaltigsten Nutzen stiften. Doch wo investiert man? Wie geht man vor? Was muss man beachten? Ein Patentrezept gibt es nicht. Was jedoch für alle Unternehmen gilt, es müssen die drei folgenden Fragen, und zwar besser gestern als heute, bearbeitet und geklärt werden:

Wer managt das Asset Daten? Als ersten und zentralsten Punkt gilt es zu defiinieren: Wer hat den Hut für die Daten und die analytischen Ergebnisse auf? Diese ist grundlegend und entscheidend, denn auswertungsrelevante Daten folgen häufig weder einem etablierten Unternehmensprozess noch der organisatorischen Linie. Vielmehr werden Daten cross-funktional erzeugt und an verschiedensten Stellen angereichert. Analytische Szenarien haben sehr häufig die Eigenschaft, diese Daten kombiniert auszuwerten.

Zudem gibt es im Gegensatz zu vielen traditionellen Bereichen wie der HR, die ein Talent- und Personal-Management kennt, oder dem Anlagenmanagement mit seinen Investitionsspiegeln und -plänen für die Datenwelt bis dato so gut wie keine, allenfalls rudimentäre Managementstrategien. Die Strukturen für unternehmensweites Datenmanagement und Analytics müssen daher in nahezu allen Unternehmen erst geschaffen werden. Und je nach Data-Driven-Business-Modell werden dabei Daten aus völlig verschiedenen Quellen, Bereichen und von unterschiedlichster Art benötigt.

Das alles unter eine Managementstrategie zu bringen, fordert also vor allem den Mut, vorhandene Organisationsstrukturen aufzubrechen. Denn, so hat sich gezeigt: Aus dem Boden gestampfte Sonderabteilungen sind nicht die Lösung! Vielmehr geht es darum, eine unternehmensübergreifende Datamanagementkultur zu schaffen und eine Organisationsform, die nicht aneckt und keine Flaschenhälse schafft. Immer mehr Unternehmen erkennen dies und setzen sich damit proaktiv auseinander.

Welchen Business Value bedient ein Use-Case? Der zweite wesentliche Aspekt auf dem Weg zum Business-Value liegt in der Betrachtung seiner selbst. Dabei geht es nicht um eine reine ROI-Berechnung, sondern um die Beantwortung der Frage, auf welchen betrieblichen Mehrwert die BI-, Big-Data- oder Analytics-Initiative einzahlen soll. Geht es beispielsweise darum, Prozesse besser zu analysieren, um damit Kosten zu sparen? Ist man auf mehr Umsatz oder bessere Qualität aus? Zielt die Initiative auf das Erreichen höherer Effizienz ab oder steht Risikominimierung im Vordergrund?

Wie werden Daten nachhaltig zugänglich gemacht? Der dritte nicht zu unterschätzende Punkt, den es bei BI und Analytics im Hinblick auf Nutzen und Value zu beachten gilt, ist das Thema Dokumentation. Gerade der Data Catalog erhält hier aufgrund der zunehmenden Komplexität und Heterogenität der Datenlandschaften als verlässlicher Wegweiser durch die Datenwelt eine wachsende Bedeutung. Um den Zugang zu Daten nachhaltig zu gewährleisten, müssen relevante Daten quellenübergreifend dokumentiert sein. Geeignete Data-Catalog-Tools sind am Markt gefragt und werden gesucht. Aber auch methodische Aspekte sind zu klären: Was soll drinstehen, wo findet man die relevanten Daten im Unternehmen und wer ist zuständig für die Datenqualität?

Auch wenn klassische Data-Warehousing-Konzepte im Sinne von Daten zusammenführen und harmonisieren weiterhin ihre Berechtigung behalten werden, ist ein Trend weg vom physischen Vorhalten aller Daten an einer zentralen Stelle bereits Realität. Der Weg geht hin zum Entwurf von Datenlandkarten, über die die Zugriffe realisiert werden. Das spart Zeit und Geld. Vor dem Hintergrund ständig wachsender Datenmengen entstehen so Datenarchitekturen, die den Geschwindigkeiten und Flexibilitätsanforderungen heutiger Geschäftsmodelle entsprechen. Es entstehen Data Landscapes und Data Oceans. Den Begriffsneuschöpfungen scheinen hier keine Grenzen und kein Ende gesetzt.

II. Cloud-Frontends setzen sich durch

Was in der Analytics-Welt am Backend schon eine Zeit lang gang und gäbe ist, gilt verstärkt nun auch für die Frontend-Welt: Moderne Cloud-basierte Frontends sind verfügbar und werden zunehmend diskussionsloser genutzt. Die Unternehmen scheinen ihre Skepsis und Furcht vor Cloud-Computing immer weiter abzulegen, gerade in unkritischeren Bereichen wie Vertrieb und Finance; allenfalls in sensibleren IP-nahen Bereichen mag das noch anders sein, etwa bei Rezepturen und Bauplänen. Die Öffnung hin zur Cloud ist dabei auf den generellen technologischen Fortschritt zurückzuführen, aber auch auf die naturgemäße „Ver-Rentung“ von Bedenkenträgern mit ihrer „alten Denke“ im Gepäck. So oder so ist der Trend hin zur Cloud nicht mehr zu stoppen: On-Premise-Systeme werden immer mehr zu Insellösungen.

III. Query-Engines verbinden Welten

War es im letzten Jahr an gleicher Stelle noch reine Prognose, wird es jetzt zur Realität: Es gibt immer mehr Query- Engines am Markt, die strukturierte und unstrukturierte Datenwelten miteinander verbinden, ohne dass man hierfür Technologiewechsel in den Architekturen benötigt. Insofern wird es eine Orientierung auf nur eine Seite nicht mehr geben. Denn egal, was man an Quellen darunterpackt: Jegliche Formate lassen sich künftig über ein und denselben Dienst kombinieren und das unbegrenzt in beliebigem Ausmaß. Anbieter wie Azure Synapse Analytics verbinden Data Warehousing und Big Data. Dadurch wachsen die Welten im Sinne einer „Single Source of Truth for Enterprise Analytics” konzeptionell zusammen. Data Engineers, Data Scientisten und Analysten können so kollaborativ den gesamten Daten-Fundus abfragen, ohne dafür irgendwelche Daten bewegen zu müssen.

IV. Zusammenspiel von Data Science, Data Engineering und Data Governance bewusst fördern

Apropos Data Scientist: Der bleibt auch weiterhin wichtig, muss aber zunehmend zu den Business Values beitragen, um seine Bedeutung und Daseinsberechtigung im Unternehmen zu bewahren. Zu oft nämlich konnte er in der Vergangenheit das Delivery-Versprechen mangels verfügbarer Daten nicht einlösen und die damit verbundenen Erwartungshaltungen nicht erfüllen. An der Schnittstelle von Architektur und Datenmanagement wird gleichzeitig die Stellung des Data Engineers mit entsprechend großem Potenzial massiv nach oben gehen. Zu seiner strategischen Schlüsselposition als Garant für das zuverlässige Funktionieren der Analytics Infrastruktur gehört dabei auch das Thema Data Governance. Dieses ist 2020 ein absolutes Top-Thema und schließt nicht zuletzt wieder den Kreis zur Schaffung einer Data-Management-Organisation, Quelldokumentation und letztendlich damit der Grundlage zur Erzielung von Business Value.

Mein Tipp: QUNIS hat ein Klassifizierungsschema entwickelt, das Ihnen hilft, Analytics-Use-Cases einzuordnen und zu identifizieren, an welcher Stelle Sie mit Ihrem B-I und Analytics-Projekt welchen Business-Value erzielen können und womit gegebenenfalls nicht.  Mehr zum QUNIS BUSINESS CLASSIFICATION FRAMEWORK erfahren.

AI funktioniert anders als BI. Oder: Empfehlungen für die Verankerung von AI in Ihrem Unternehmen.

Erstellt am: Freitag, 20. September 2019 von Monika Düsterhöft

Obwohl sich AI und BI auf den ersten Blick mit demselben Thema, also mit Daten, deren Analyse und der Erkenntnisgewinnung daraus beschäftigen, ist es wichtig zu verstehen, dass AI anders funktioniert als BI.

Bei BI fußt das methodische Vorgehen auf einem Gegenstromverfahren, dessen Ziel es ist, eine strukturierte Datenhaltung, in der Regel ein Datawarehouse, mit all den notwendigen Daten aufzubauen, um definierte KPIs möglichst akkurat ausspielen zu können.

Die AI hingegen stellt Werkzeuge, um einen explorativen Prozess zu begleiten, der sich mit Target Scoping, Data Understanding, Data Preparation und Modelling, Evaluation und Deployment beschäftigt – und zwar ergebnisoffen, inklusive „Lizenz zum Scheitern“, wenn Analyseideen in manchen Fällen in einer Sackgasse landen.

AI hat die Lizenz zum Scheitern

Im Zweifel heißt es zurück auf Start und checken, ob das gesetzte Ziel mit den vorhandenen Daten überhaupt zu erreichen ist. Oder ob man eventuell andere Erkenntnisse gewonnen hat, die nichts mit der ursprünglichen Zielsetzung zu tun haben oder diese sogar auf den Kopf stellen.

So kann sich beispielsweise nach der AI-basierten Analyse der Kundendatenbasis herausstellen, dass ein Angebot immer an eine völlig falsch segmentierte Zielgruppe ausgespielt worden ist. Es könnte sich erweisen, dass ein Testzyklus keinerlei Einfluss auf das am Ende tatsächlich erzielte Ergebnis hatte, oder eine Mustererkennung könnte Next-Best-Action oder Next-Best-Offer-Empfehlungen nahelegen, die erst durch das Einbeziehen von Social-Media-Aktivitäten sichtbar geworden sind.

Um nun die in Ihrem Unternehmen schlummernden Potenziale und Einsatzfelder für AI zu finden, sollten Sie nicht einfach nur versuchen bekannte AI Use Cases zu kopieren. Ebenso wenig zielführend ist es, sich ohne passende Methodik auf Ideenjagd für denkbare AI-Projekte, AI-Angebote oder AI-Lösungen zu begeben.

Unsere klare Empfehlung lautet stattdessen: Schauen Sie sich Ihre vorhandenen Prozesse, Produkte und Services an. Identifizieren Sie Brüche und formulieren Sie Wünsche und Ziele, was Sie gerne effizienter, zielgerichteter, transparenter, smarter, on top erreichen wollen.

AI als Werkzeug verstehen

Denken Sie AI als Werkzeug, das Ihnen helfen kann, Muster und Auffälligkeiten zu entdecken und damit den Maßnahmen, die zum gesetzten Ziel führen, näher zu kommen. Oder schauen Sie sich Prozesse unter dem Aspekt der Wiederholbarkeit oder Effizienzsteigerung an und arbeiten Sie die Abschnitte heraus, die von einem Algorithmus gelernt und übernommen werden können.

AI kann nicht nur neue Business Modelle ermöglichen, AI verfügt über ausgereifte Tools, die Ihnen schon heute dabei helfen, etablierte Prozesse zu optimieren und vorhandene Produkte oder Angebote weiter auszubauen. Identifizieren Sie die dafür vorhandenen Daten und Datenquellen, bewerten Sie deren Umfang und Qualität und definieren Sie, wo die Daten zusammengeführt und gespeichert werden sollen, um für das Arbeiten mit AI zur Verfügung zu stehen.

Als geeignetes Konzept hierfür hat sich ein Data Lake erwiesen, in dem sowohl strukturierte als auch polystrukturierte Daten verwaltet werden. Denn im Data Lake kommt die BI-Welt mit Big Data als Grundlage für AI-Anwendungen zusammen.

Egal ob sie in einer Prozessoptimierung oder in einer Produkt- oder Service-Diversifizierung mündet, soll der Einsatz von AI nachhaltig erfolgreich sein, ist ein weiterer Punkt zu berücksichtigen: setzen Sie AI-Vorhaben immer unter Einbeziehung der Organisation auf.

Ein quasi im Reagenzglas entstandenes AI-Ergebnis zurück in die Linienorganisation zu führen, ist eine riesige Herausforderung, denn die Akzeptanz spielt auch bei AI, wie bei allen Innovations- und Change-Prozessen, eine wesentliche Rolle.

AI erlebbar machen

Machen Sie also Beobachter zu Beteiligten, um typische Aversion gegen aufoktroyierte Themen, an denen man nicht selbst mitgewirkt hat, zu vermeiden und bauen Sie parallel zur Entwicklung des AI-Projektes das Verständnis der Mitarbeiter für die Art und Weise, wie AI funktioniert auf.

Dabei führt der Weg zu AI über den Zugang zu den Methoden. Mag es auch noch so verlockend sein, Ansätze und Use Cases einfach zu übernehmen, so empfiehlt sich doch auf jeden Fall zusätzlich der funktionsgetriebene Zugang. Denn dieser baut schneller das wichtige Verständnis auf und schärft darüber hinaus den Blick für die eigenen, ganz individuellen Potenziale. Ganz nach dem Motto: Verstehe was eine Anomalie ist und wie man sie aufdeckt, dann wirst Du auch schneller darauf kommen, wo sie in Deinem Unternehmen vorkommen könnte.

Und noch ein Tipp in Richtung der organisatorischen Verankerung: Bringen Sie nicht nur Daten in einen Zusammenhang, lösen Sie sich auch intern von künstlichen Grenzen und führen Sie BI- und Big-Data-Initiativen zusammen. Denn obwohl die Methodiken unterschiedlich sind, arbeiten beide oft mit denselben Daten und mit einer großen Schnittmenge an gleichen Werkzeugen.

AI integrieren

Datensilos und organisatorische Grenzen für die Datenarbeit machen in Zeiten von Digitalisierung und datengetriebener Unternehmen wenig Sinn; nur unternehmensweite Konzepte für das Datenmanagement inklusive BI, Big Data und Data Governance können künftig erfolgreich sein. Fördern Sie daher die Zusammenarbeit und schaffen Sie das Bewusstsein für die kollaborative Datenarbeit – je früher desto besser.

Sie wollen mehr zu den AI-Methoden erfahren?

Mein Tipp: Holen Sie sich die kostenfreien QUNIS AI FACTHSHEETS. Unser Data Science Experten geben einen Überblick zu neun erfolgreichen AI-Methoden. Sie erklären kompakt, welche AI-Methode sich wann am besten eignet, welche Fragestellungen damit konkret beantwortet werden und welche Daten erforderlich sind. QUNIS AI FACTSHEETS

Hilfe im Dschungel der Analytics Tools. Wir haben den Markt für Sie sondiert.

Erstellt am: Dienstag, 16. Juli 2019 von Monika Düsterhöft

Kaum ein Segment im Softwaremarkt unterliegt derzeit so vielen Veränderungen wie das der analytischen Werkzeuge.

Jedes Jahr sprudeln neue Produkte auf den Markt: branchenspezifische Nischenprodukte, Produkte für spezielle Aufgabenstellungen wie Textanalysen, Produkte für spezielle Fachabteilungen wie das Marketing, und, und, und…. Hinzu kommen noch umfangreiche Analytics-Plattformen, die versuchen, viele Anwendungsbereiche abzudecken oder Nutzer verschiedenster Kompetenzstufen anzusprechen.

Manche Tools setzen zudem auf einfache Zusammenarbeit in Teams, andere auf automatisiertes Reporting oder auf gute Visualisierungsmöglichkeiten. Jedes Produkt hat seine Vor- und Nachteile und ist beim heutigen Entwicklungs- und Innovationsdruck sicher noch nicht am Ende seiner Fähigkeiten angekommen. Nicht alle Produkte werden sich auf Dauer am Markt durchsetzen können – alle Produkte werden sich aber mit Sicherheit weiterentwickeln.

Man muss nicht zwingend Data-Science-Profi sein.

Der derzeitige Markttrend geht in Richtung Augmented Analytics. Dies bedeutet, mit den entsprechenden Werkzeugen können auch mathematisch und statistisch versierte Fachanwender und Citizen Data Scientisten Künstliche Intelligenz für Ihre Datenauswertung nutzen. Denn mittels Artificial Intelligence (AI) und Machine Learning werden Analyseschritte wie die Auswahl des richtigen Algorithmus von den Tools automatisiert, so dass der Nutzer kein Data-Science-Profi sein muss, um bestimmte Data-Science-Analysen durchführen zu können.

Es werden zum Beispiel Daten mit einer Clusteranalyse gruppiert, ohne dass der Nutzer verstehen muss, was im Hintergrund passiert. Ebenso können mit einem Klick Umsätze oder ähnliche geschäftsrelevante Daten mittels Zeitreihenanalysen vorhergesagt werden. In manchen Tools kann zudem durch die Einbettung von AI die Suche nach relevanten Daten mittels Sprachsteuerung oder Google-ähnlicher Suchfunktionen erleichtert werden. All das rangiert unter Augmented Analytics und gibt einen Eindruck davon, wie sich der Markt an Analytics-Werkzeugen weiter wandeln wird.

Welches Tool passt zu mir?

Bei der Vielzahl an Produkten und dem stetigen Wandel ist es schwer, den Überblick zu behalten. Wir haben den Markt gescannt und die Tools anhand typischer Nutzeranforderungen segmentiert.

  • Marktsegment 1: Reportingwerkzeuge
  • Marktsegment 2: BI & Analytics Suiten
  • Marktsegment 3:  Machine Learning (ML) & Data Science (DS) Plattformen
  • Marktsegment 4: Integrierte Entwicklungsumgebungen (IDEs) und Notebooks

Diese Segmentierung soll Ihnen helfen, das für Sie passende Tool zu finden. Um nun die für Sie passende Zuordnung zu identifizieren machen Sie sich bewusst, was Sie von dem Analysewerkzeug erwarten. Folgende Fragen unterstützen Sie dabei:

  • Reichen starre und einfache Visualisierungen von Daten, die sich als Bilddatei oder Tabelle abspeichern können?
  • Sollen mehrere Nutzer in einer explorativen Analyse zusammenarbeiten können?
  • Wenn ja, inwiefern soll die Zusammenarbeit unterstützt werden?
  • Nutzer welcher Fähigkeitsstufen sollen kollaborieren?
  • Wie ist deren Aufgabenverteilung?
  • Welche Anforderungen bestehen bezüglich Visualisierungen, statistischen und Machine-Learning-Funktionalitäten?
  • Inwiefern soll das Tool Data-Science-Prozesse wie das Trainieren von ML-Modellen unterstützen?

Mit Antworten auf diese Fragen sehen Sie schnell, in welchem Marktsegment sich das zu Ihren Anforderungen passende Tool befindet. Reicht Ihnen ein Reportingwerkzeug (Marktsegment 1) oder suchen Sie eher ein Tool für einen Power User (Marktsegment 2)? Oder gehen die Nutzer schon einen Schritt weiter in Richtung Data Science (Marktsegment 3)? Oder wollen Ihre Nutzer vollste Flexibilität und scheuen sich nicht vor anspruchsvoller Programmierung in Entwicklungsumgebungen (Marktsegment 4).

Marktsegmentierung von Analyse-Werkzeugen 

Sie fallen in mehrere Segmente? Kein Problem.

Die Anforderungen und Fähigkeiten der Nutzer in Ihrem Unternehmen gehen weit auseinander, so dass Sie nicht nur EIN relevantes Marktsegment für sich identifizieren? Keine Angst, das ist normal. Mit der richtigen Strategie und einem durchdachten Datenmanagementkonzept können diverse Tools auch problemlos miteinander kombiniert werden. Gerne unterstützen wir Sie hier bei der Auswahl und Implementierung, so dass Sie in Ihrem Unternehmen die datenbasierte Entscheidungsfindung mit Technologie der neuesten Generation schnellstens vorantreiben können.

Mein Tipp: Denken Sie zudem daran, dass die Nutzer mit dem Werkzeug gerne arbeiten und beziehen Sie diese in die Auswahl mit ein. Ich als Data Scientistin kann Ihnen sagen: „Nichts erschwert die Kreativität bei der explorativen Analyse mehr als eine Software, mit der man sich nicht wohl fühlt.“

In diesem Sinne, nutzen Sie unsere Segmentierung zur Orientierung und sprechen Sie uns gerne an. Ich freue  mich auf den Austausch mit Ihnen!

Übrigens – unsere beliebtesten Data Science Algorithmen haben wir ebenfalls übersichtlich für Sie zusammengestellt. Sie finden diese direkt hier auf unserem kostenfreien QUNIS MACHINE LEARNING CHEAT SHEET

AI, Advanced Analytics, Big Data und ihre Bedeutung für die BI

Erstellt am: Mittwoch, 1. Mai 2019 von Monika Düsterhöft

Artificial Intelligence (AI) nutzt Machine Learning

Artificial Intelligence ist ein Begriff, der sofort sehr stark mit Innovation assoziiert wird und gleichermaßen eine große Faszination wie diffuse Ängste auslösen kann, obwohl oder vielleicht auch gerade weil es bis dato keine generell akzeptierte oder allgemeingültige Definition dessen gibt.

Sprach Richard Bellman 1978 beispielsweise von „der Automatisierung von Aktivitäten, die wir mit menschlichem Denken assoziieren, also dem Fällen von Entscheidungen, Problemlösung, Lernen …“, definierte Patrick Henry Winston 1992 die AI als „das Studium von Berechnungen, die es möglich machen, wahrzunehmen, schlusszufolgern und zu agieren“. Eine weitere Definition aus dem Jahre 1990 von Ray Kurzweil trifft es ebenso im Kern: „Die Kunst, Maschinen zu entwickeln, die Funktionen ausüben, welche Intelligenz erfordern, wenn sie vom Menschen ausgeführt werden.“

Ein Großteil der Methoden, mit denen Artificial Intelligence (AI) realisiert wird, fasst man unter dem Oberbegriff des Machine Learning (ML) zusammen. Maschinelles Lernen ist sehr stark der Art nachempfunden, wie wir Menschen lernen – so werden der Maschine in immer wiederkehrenden Schleifen Beispiele vorgelegt, anhand derer ein Sachverhalt gelernt wird, nur um das Gelernte anschließend verallgemeinern zu können.

Beispielsweise zeigt man der Maschine zahlreiche verschiedene Bilder von Katzen, auf dass sie danach das Prinzip „Katze“ verinnerlicht hat und solche auch auf Bildern erkennen kann, die sie vorher noch nicht zu sehen bekommen hat. Wie auch beim Menschen wird beim maschinellen Lernen nach der Lernmethode unterschieden – so unterscheiden wir zwischen dem überwachten Lernen (Supervised Learning), also dem Lernen anhand vordefinierter Beispiele, dem unüberwachten Lernen (Unsupervised Learning), was das automatische Erkennen von Mustern oder Merkmalen zum Inhalt hat, sowie dem bestärkenden Lernen (Reinforcement Learning), das auf dem Prinzip des Belohnens und Bestrafens basiert.

Advanced Analytics nutzt AI

Bei der Advanced Analytics kommen maschinelles Lernen sowie andere mathematisch-statistische Verfahren und Modelle zur Anwendung. Hierunter verstehen wir das methodische Analysieren und Interpretieren von Daten beliebiger Strukturen mit Ziel einer möglichst automatischen Erkennung von Bedeutungen, Mustern und Zusammenhängen und/oder der Prognose bestimmter Eigenschaften oder Kennzahlen.

Die Advanced Analytics kann somit auch als nächste Evolutionsstufe der Business Intelligence gelten. Während die traditionelle Business Intelligence den Blick vorrangig in die Vergangenheit richtet, um den Manager zu ermächtigen, die richtigen Rückschlüsse und bestmöglichen Entscheidungen für die künftige Ausrichtung des Unternehmens zu treffen, versucht die Advanced Analytics, diesen Prozess weitestgehend der Maschine zu überlassen, also zu automatisieren und selbst in die Zukunft zu schauen. Dies erfolgt in zwei aufeinanderfolgenden Schritten – im ersten werden durch die Predictive Analytics Vorhersagen über zu erwartende Entwicklungen gemacht, im zweiten zeigt die Prescriptive Analytics potenzielle Maßnahmen auf, gezielt wünschenswerte Ergebnisse zu erreichen.

Big Data erweitert BI

Wie auch in des Managers Entscheidungsprozess weitere relevante Zusatzinformationen neben den reinen Geschäftsergebnissen einfließen, beispielsweise Wetterdaten, geolokale Informationen oder Markttrends, so ist dies analog gültig für die Advanced Analytics. So beschafft man sich neben den strukturierten Daten aus ERP-, CRM- oder anderen Systemen wie beispielsweise dem zentralen Data Warehouse weitere Informationsquellen, die in die Analytics mit eingebunden werden. Dies können nicht selten Datenbestände sein, die man im Allgemeinen dem Begriff Big Data zuordnet.

Konkret bezeichnet Big Data eine bestimmte Art und Beschaffenheit von Daten plus dazu passende Methoden und Technologien für die hochskalierbare Erfassung, Speicherung und Analyse. Gerne wird in dem Zusammenhang auch von den drei Vs gesprochen:

  • Variety oder die Datenvielfalt: Immer mehr Daten liegen in unstrukturierter und semistrukturierter Form vor, beispielsweise aus den sozialen Netzwerken oder auch Geräten und Sensoren.
  • Volume oder die Datenmenge: Immer größere Datenvolumina werden angesammelt – Größenordnungen von mehreren Petabytes sind keine Seltenheit mehr.
  • Velocity oder die Geschwindigkeit: Riesige Datenmengen müssen immer schneller ausgewertet werden, bis hin zur Echtzeit. Die Verarbeitungsgeschwindigkeit muss mit dem wachsenden Datenvolumen Schritt halten.

Bezieht man also neben strukturierten Daten auch unstrukturierte, polystrukturierte und Massendaten, idealerweise realtime in die Analyse mit ein und bedient sich dafür unter anderem der Methoden des Machine Learnings, erweitert man die BI durch Big Data und den Einsatz von AI hin zur Advanced Analytics.

Viele spannende Informationen warten darauf, auf diese Art von Ihnen entdeckt zu werden!

Mein Tipp: Sie wollen den Machine Learning Algorithmen auf den Grund gehen? Holen Sie sich das kostenfreie QUNIS Machine Learning Cheat Sheet als PDF, im Pocket-Format oder als Poster für die Wand. Hier direkt QUNIS MACHINE LEARNING CHEAT SHEET holen.

CDS – der Citizen Data Scientist als Weg aus dem Analytics-Ressourcen-Engpass

Erstellt am: Montag, 18. März 2019 von Monika Düsterhöft

Für die Umsetzung von Advanced-Analytics-Vorhaben ist eine durchdachte Datenstrategie unverzichtbar. Sie regelt alle Fragen rund um die technische Systemintegration, die Data Governance und das unternehmensweite Data Quality Management (DQM).

Darüber hinaus gibt es neue fachliche Anforderungen und Aufgabenfelder wie die Definition komplexer Algorithmen für das Heben wirtschaftlicher Potenziale oder das Deployment der entstandenen Data-Science-Services. Der Data Scientist nimmt bei diesen Aufgaben eine der zentralen Schlüsselrollen ein. 

Neue Advanced-Analytics-Aufgaben benötigen Data Scientisten mit vielfältigen mathematischen, technischen und prozessualen Skills.

Mit seinem tiefen Einblick in die Fachbereiche formuliert der Data Scientist die Projektanforderungen, kümmert sich um die Themen Datenmanagement und Data Quality Management unter Beachtung der Data Governance und übernimmt die Definition von Datenmodellen und Algorithmen. Er hat tiefe mathematisch-statistische Kenntnisse, kann programmieren, kennt sich mit Datenschutz und sonstigen Compliance-Regeln aus und verfügt über umfangreiches Business-Know-how.

Kurzum, der Data Scientist ist ein Allrounder mit viel Spezialwissen und umfassender Erfahrung. Kein Wunder daher, dass diese Fachkräfte äußerst gefragt und ziemlich rar sind und dass viele Digitalisierungsvorhaben schlichtweg wegen dieser fehlenden Skills und Ressourcen stagnieren.

Arbeitsteilung, Tools und das Konzept des Citizen Data Scientist (CDS) können Abhilfe aus dem Ressourcen-Dilemma schaffen.

Ein Ansatzpunkt ist die Entlastung des Data Scientists von Routinen im Datenmanagement. Speziell bei der Datenakquisition können technisch versierte Experten, die sogenannten Data Engineers, den Data Scientist gut unterstützen. Ein zweiter Ansatzpunkt, der sich derzeit am Markt für analytische Applikationen abzeichnet, ist die zunehmende Verlagerung von analytischem Know-how in die Systemwelt.

Etablierte BI-Anbieter beispielsweise erweitern ihr Portfolio um Datenvisualisierungstools, die Visual Analytics ohne Programmieraufwand unterstützen. Per Drag-and-drop können hier Datenströme hinzugefügt, verbunden und analysiert werden, und im Hintergrund laufen die neuesten Algorithmen für die fortgeschrittene Datenanalyse. Auch die Branche der AI-Spezialisten liefert unter der Bezeichnung „Augmented Analytics“ anwenderorientierte Werkzeuge, die Funktionen zur Automatisierung der Datenaufbereitung, Erkenntnisfindung und Datenanalyse enthalten.

Mithilfe solcher anwenderorientierten Frontends können geübte BI Power User, die ein mathematisch-statistisches Grundverständnis sowie Interesse an Analytics mitbringen, bestimmte Aufgabenfelder der Data Science übernehmen und so neben den Data Engineers ebenfalls ihren Teil dazu beitragen, das begehrte Skillset des Data Scientists zu erfüllen. Es kristallisiert sich ein neues Rollenbild heraus. Wir sprechen vom Citizen Data Scientist (CDS), der mit den richtigen Tools in der Lage ist, analytische Aufgaben auszuführen und auch selbst Modelle zu erstellen, die fortgeschrittene Analysen, Vorhersagen und präskriptive Funktionen enthalten.

Die Ausbildung von CDS ist ein aussichtsreicher Ansatzpunkt, um analytische Kompetenzen im Unternehmen aufzubauen.

Im Grunde kann jeder Fachanwender oder IT-Spezialist, der ein Grundverständnis für Datenarbeit sowie statistisches und mathematisches Know-how mitbringt, den Umgang mit Self-Service-Data-Science-Werkzeugen erlernen. Besonders geeignet sind BI Power User, die lernbereit und neugierig darauf sind, Data Science und vorhersagende Algorithmen für ihre Geschäftsprozesse zu erkunden.

Im Gegensatz zum klassischen BI-Anwender, der auf der Basis vorgefertigter Daten-Cubes arbeitet, bewegt sich der CDS dabei jedoch auch auf der Ebene der Rohdaten, um explorativ neue Erkenntnisse zu generieren. Weitere aussichtsreiche Kandidaten für Citizen Data Science sind Ingenieure mit Hintergrundwissen aus Mathematik, Statistik und Modellierung.

Die neuen Data-Science-Experten benötigen Rückendeckung und Unterstützung für ihr Tätigkeitsfeld.

Für ihre Aufgabenfelder bringen unternehmensintern ausgebildete CDS neben ihren analytischen Fähigkeiten auch ihr bereits vorhandenes Markt- und Branchen-Know-how sowie das Wissen um interne Prozessen in die Datenanalysen mit ein. Ein wesentlicher und nicht zu unterschätzender Vorteil. Sie brauchen aber auch Rückendeckung durch das Management sowie Unterstützung durch die interne IT.

CDS benötigen mehr Daten, zum Teil auch mehr ungefilterte Daten und sie brauchen IT-Umgebungen, in denen sie mithilfe aktueller Tools und Technologien experimentieren und Prototypen von Modellen und Applikationen bauen können. Zudem müssen sie den zeitlichen Freiraum für ihre Datenrecherchen erhalten.

Ein versierter Partner an der Seite, der neben der expliziten Data-Science-Expertise auch Erfahrung aus anderen Projekten mit einbringt und die neuen CDS auf ihrem Weg begleitet, ist eine weitere äußerst wertvolle Hilfe und ein wichtiger Baustein für den Erfolg einer Advanced-Analytics-Initiative.

Wenn die Rahmenbedingungen stimmen, können sich Unternehmen auf diese Weise pragmatisch wertvolle Personalressourcen aus den eigenen Reihen erschließen und richtig Schubkraft in ihre Digitalisierungsprojekte bringen.

Mein Tipp: Besuchen Sie das CA-Seminar – Deep Dive Advanced Analytics – Machine Learning in der Praxis mit „R“ – und lernen Sie das Tagesgeschäft eines Data Scientist besser kennen. Das Seminar wird von und mit QUNIS Experten durchgeführt und findet im Rahmen der Kooperation mit der CA Controller Akademie und des Ausbildungsprogramms zum Information Manager statt. Mehr zu allen CA-Seminaren finden Sie hier.

Data-Science-Services einfach und stabil bereitstellen mit dem AHUB Deployment Framework.