Archiv für die Kategorie Digitalisierung

Die zentrale Studie zum Stand von Data & Analytics

Erstellt am: Mittwoch, 18. März 2020 von Monika Düsterhöft

Die Digitalisierung verändert unsere Arbeitswelt in einer rasanten Geschwindigkeit. Und auch die aktuelle Krise zeigt, was Digitalisierung und Datenarbeit zu leisten vermögen. Doch wo stehen wir aktuell? Welche Prozesse und Geschäftsmodelle wandeln sich im Unternehmen? Was bedeutet dies für unseren Arbeitsalltag? Digitalisierung ohne Wenn und Aber? Diese und weitere Fragen möchten wir im Rahmen einer Studie klären und die daraus resultierenden Erkenntnisse und Empfehlungen mit Ihnen teilen.

Machen Sie mit bei the factlights 2020 – die zentrale Studie zum Stand von Data & Analytics im deutschsprachigen Raum. 


Alle Teilnehmer der ONLINE-UMFRAGE erhalten ein exklusives Management Summary und die Möglichkeit auf attraktive Gewinne, wie einen E-Scooter, Taschen von ‚The North Face‘ oder einen 10 Euro Amazon-Gutschein als Sofort-Dankeschön.

Die Studie hinterfragt: Welche Prozesse und Geschäftsmodelle wurden umgestaltet? Was ist noch pure Vision, was in der Planung und was bereits gelebte Praxis? Was passiert bewusst und was eher unterbewusst? Welche Umstände halten Unternehmen und Mitarbeiter davon ab, die Möglichkeiten moderner Datenarbeit auszuschöpfen? Wo liegen Ängste, Sorgen und Nöte? Wie wird diesen begegnet? Was wird vorausgesetzt und was erwartet? Und wie soll es idealerweise weitergehen?

the factlights 2020 ist eine Initiative der QUNIS

Gemeinsam mit den Partnern CA Controller Akademie, HEUSSEN, Liebich & Partner, QUNIS und WTS ITAX wird im Zeitraum von März bis Mai 2020 die großangelegte Online-Umfrage the factlights 2020 – About Datat & Analytics Reality durchgeführt. Es geht um eine Bestandsaufnahme dazu, ob und wo Digitalisierung & Co. im Arbeitsalltag der Fachbereiche angekommen sind. In mittelständischen und Großunternehmen. Befragt werden sowohl Leitungsebene als auch Mitarbeiter aus allen Branchen und Bereichen. Angefangen von Finance, Accounting, Controlling, Sales und Marketing bis hin zu IT, Logistik und HR.

Trend-Artikel, Fachbeiträge, Tipps, Studien, Downloads und mehr

Auf the factlights informieren führende Unternehmen verschiedenster Disziplinen und Branchen zu aktuellen Herausforderungen, Stand von Forschung, Lehre, Markt und Technologie. Ganzjährig und aus den verschiedensten Blickwinkeln des Marktes. Hier geht‘s zu WWW.THE-FACTLIGHTS.DE

PUREN Pharma: Effiziente Prozesse und Datenanalysen im Web-Portal mit QUNIS

Erstellt am: Donnerstag, 12. März 2020 von Monika Düsterhöft

Das erfolgreiche Pharmaunternehmen PUREN Pharma hat mit Hilfe der QUNIS digitale End-to-End Geschäftsprozesse umgesetzt, zu denen auch fortgeschrittene Analysen mit zahlreichen internen und externen Datenarten gehören. Das spart viel Zeit und sichert die hohe Qualität von Prozessen und Informationen.

Wir haben mit QUNIS unsere komplexen Geschäftsprozesse unternehmensweit standardisiert und automatisiert. Basis ist ein zentrales Informations- und Analyse-Portal, in das wir jederzeit weitere Nutzer und Datenquellen oder neue On-Premise- und Cloud-Technologien einbinden können.

Christoph Gmeiner,
Teamlead Data Science & Business Intelligence,
PUREN Pharma GmbH & Co. KG

Die Anforderung: Umfangreiche Rechnungsbearbeitung

Generika von PUREN tragen entscheidend dazu bei, dass hochwertige Arzneimittel für jeden bezahlbar bleiben. In diesem Rahmen hat PUREN zudem zahlreiche Rabattverträge mit Krankenkassen abgeschlossen. Die Verwaltung der Verträge und der einzelnen Abschlagszahlungen an die Krankenkassen wurde für das erfolgreiche Pharmaunternehmen jedoch immer komplizierter.

Problematisch war vor allem, dass in einzeln geführten Excel-Listen der direkte Bezug zwischen den in den Apotheken getätigten Umsätzen und den monatlich, quartalsweise oder jährlich verrechneten Abschlagszahlungen an die Krankenkassen fehlte. Bei bundesweiten Verträgen mit rund 150 Krankenkassen, in denen u.a. unterschiedliche Abrechnungs-Zyklen, Rabatte und Dateiformate der Kassen zu berücksichtigen waren, entstand erheblicher manueller Aufwand für die Erfassung und Bearbeitung der Daten in einer Vielzahl von Excel-Dateien.

Das zuständige Team Data Science & Business Intelligence wollte den Prozess daher automatisieren und suchte nach einer Lösung, die einen einfach steuerbaren Freigabeworkflow für die Rechnungsbearbeitung mit einer zentralen Datenhaltung und Rechnungsprüfung im Backend verbindet. Die Systemlösung sollte flexibel und nach Bedarf skalierbar sein, um die wachsenden Anforderungen des Pharmaunternehmens dauerhaft abdecken zu können.

Die Lösung: Einfach steuerbare Prozess und Analyseplattform

Mit der Unterstützung von QUNIS hat PUREN seine ideale Lösung für anspruchsvolle Geschäftsprozesse gefunden und implementiert. Das Projektteam hat im ersten Schritt eine prozessorientierte BI-Plattform für die Bearbeitung der Abschlagsrechnungen realisiert und diese dann in Folgeprojekten systematisch zum umfassenden Portal für alle Fachbereiche ausgebaut.

Grundlage der umgesetzten Informations- und Analyseprozesse ist ein zentrales Data Warehouse auf Basis des Microsoft SQL Servers. Für die Auswertung der Daten werden je nach Bedarf OLAP-Analysen mit den Microsoft Analysis Services und Power BI sowie ML-Funktionalität (Machine Learning) aus der Cloud genutzt.

Als wesentlicher Erfolgsfaktor des Projekts hat sich der Einsatz eines anwenderfreundlichen Web-Frontends basierend  auf GAPTEQ erwiesen. Durch das einfache Handling der Software konnte das interne Projektteam von PUREN nach der anfänglichen Unterstützung durch QUNIS schnell eigenständig weitere Module umsetzen. Inzwischen sind neben einigen Detail-Anwendungen vor allem drei zentrale Geschäftsprozesse in GAPTEQ abgebildet:

1. Transparenter Prüf- und Freigabeworkflow für Abschlagsrechnungen

Was die Sachbearbeiter in der Buchhaltung früher einzeln in Excel und auf Papier erledigen mussten, läuft heute größtenteils automatisiert. Abschlagsrechnungen der Krankenkassen in verschiedensten Dateiformaten werden maschinell in GAPTEQ eingelesen und vom System geprüft. Die integrierte Power BI-Datenbank gleicht dafür Umsatz- und Absatzdaten sowie bereits geleistete Abschlagszahlungen, die per Schnittstelle aus dem ERP-System importiert werden, mit den Rechnungsdaten ab.

Automatisierte Datenströme sorgen für zuverlässige Ergebnisse, auf deren Basis dann der Workflow in GAPTEQ angesteuert wird. Gemäß der hinterlegten Matrix, z.B. je nach Höhe der Zahlungssumme, gelangt die Rechnung nach Freigabe durch die Sachbearbeiter oder ihre Vorgesetzten zur Zahlung an die Abteilungen Customer Service und die Finanzbuchahltung. Das Tracking und die Bearbeitung der zahlreichen Rabattverträge konnte PUREN so in einem übersichtlichen Standard-Workflow mit den Aktionen „Eingabe, Prüfung, Signatur, Zahlung“ umsetzen. Die Mitarbeiter der verschiedenen Abteilungen werden im anwenderfreundlichen Web-Portal sicher durch ihr Tagesgeschäft geführt, während aufwändige Arbeitsroutinen wie Datenimport, Berechnungen, Datenabgleich und Validierung automatisch im leistungsstarken Backend ablaufen.

2. Präziser Forecast für langwierige Bestell- und Lieferketten

Arzneimittel müssen für die Patienten jederzeit in ausreichender Menge verfügbar sein – in der globalisierten Pharmabranche sind jedoch lange Bestell- und Lieferketten üblich. So sind für Produkte, die PUREN Pharma von seiner indischen Muttergesellschaft bezieht, Vorlaufzeiten von bis zu sechs Monaten einzuplanen. Ein möglichst präziser Forecast der erwarteten Absatzzahlen als Grundlage für punktgenaue Besellungen ist daher erfolgsentscheidend.

Im Rahmen des „Tender Managements“ hat das interne BI-Team dafür eine Plattform für Planung und Forecast realisiert, die sich vom Vertrieb über das Bestands und Produkmanagement bis zum Einkauf durchzieht. Durch maschinell erzeugte Vorschlagswerte erreicht PUREN dabei eine sehr hohe Forecast-Genauigkeit. Die Vorschlagswerte werden mit Machine-Learning-Funktionalität aus der Cloud in drei verschiedenen Algorithmen berechnet.

Neben den historischen ERP-Daten fließen u.a. auch externe Marktdaten aus den Apotheken in die Kalkulationen ein. Die Planer können die Vorschlagswerte in ihren Planmasken dann übernehmen oder manuell anpassen. Durch übersichtlich visualierte Berichte, die z.B. die Entwicklung der Umsatzdaten und Marktanteile zeigen, werden sie bei ihrer Entscheidungsfindung unterstützt und können gegebenfalls Abweichungen vom Vorschlag fundiert herleiten und begründen.

Während früher Produktprognosen in Tausenden von Excel-Dateien gepflegt wurden, wird der Forecast heute in der leistungsfähigen Systemumgebung effizient und zuverlässig erstellt und täglich aktualisiert. Das Supply Chain Management kann für seine monatlichen Bestellungen auf sehr präzise Verkaufsprognosen im Portal zugreifen.

3. Strategische und operative Steuerung der Produktlaunches

Die Lösung unterstützt zudem sämtliche Prozesse rund um die Portfolio-Planung und die Einführung neuer Produkte. Sowohl die Entscheidungsfindung als auch die Umsetzung von Produkt-Launches wird dabei mit allen involvierten Fachbereichen in der einheitlichen Systemumgebung gesteuert. Da es sich um langfristige Projekte handelt, sind hier vor allem der hohe Standardisierungsgrad und die nachvollziehbare systemgestützte Dokumentation entscheidende Vorteile. Die Systemlösung reduziert damit die Risiken durch Spezialwissen, das an einzelne Mitarbeiter gebunden ist, und fördert
stattdessen die unternehmensweite Zusammenarbeit im mehrjährigen Projekt durch standardisierte Prozesse und klar definierte Workflows.

Der Launching-Prozess startet bei PUREN mit dem Monitoring auslaufender Patente. Der Zeithorizont bis zum Patent-Verfall der überwachten Produkte beträgt im Schnitt fünf bis sechs Jahre. Um erfolgsversprechende Kandidaten für die eigene Generika-Produktpalette zu ermitteln, werden dabei im System Business Cases durchgespielt und Szenarien mit vielfältigen Annahmen gebildet. Typische Parameter sind beispielsweise Marktdaten zu Absatz und Umsatz in den Apotheken, mögliche Verpackungsgrößen, verschiedene Rabattverträge, Zertifizierungs- und QM-Kosten, usw. Durch die mächtige Analyse-Power im Backend können die Fachanwender im Verlauf der Zeit auch jederzeit Szenarien mit veränderten Rahmenbedingungen oder Auswertungen der „Pipeline“ auf Knopfdruck erstellen.

Die Entscheidung für einen Produktlaunch fällt so auf der Basis genauer Zahlen und Fakten. Die operative Umsetzung eines Launches, der sich wiederum über rund 18 Monate ziehen kann, wird dann ebenfalls in der Systemlösung gesteuert und dokumentiert. Ab diesen Zeitpunkt wird das Projekt zu einem unternehmensweiten Workflow- Thema. GAPTEQ sorgt als Arbeitsumgebung mit transparenten Abläufen und Alerts für die sichere und effiziente Abwicklung des komplexen Prozesses. Alle Abteilungen arbeiten dabei mit einheitlichen Material- Stammdaten aus dem zugrundeliegenden Data Warehouse.

Die Vorteile: Transparenz, Effizienz und Qualität gesteigert

PUREN Pharma hat mit seiner flexiblen BI-Lösung zentrale Geschäftsprozesse automatisiert. Durch die Gestaltung digitalisierter End-to-End-Prozesse und die Integration unterschiedlichster Datenformen wurden die Effizienz und Qualität von Abläufen und Informationen erheblich gesteigert. Individuelle Anforderungen des Pharmaunternehmens konnten dabei flexibel in einem standardisierten Microsoft-Umfeld abgebildet werden. Entstanden ist ein unternehmensweites Portal für alle Nutzergruppen und verschiedene Themen.

Ein wesentlicher Vorteil ist die anwenderorientierte Nutzeroberfläche. GAPTEQ dient sowohl als einfach bedienbares Web-Frontend für die leistungsstarke Analyse-Architektur und unterstützt zugleich mit dezidierter Workflow- Funktionalität die unternehmensweite Zusammenarbeit und Kommunikation. Sämtliche Nutzer arbeiten dabei auf einer zentralen Datenbasis, und sämtliche Eingaben sind nachvollziehbar im System dokumentiert.

Das Projektteam von PUREN kann die Systemlösung jederzeit selbst weiter ausbauen, verschiedenste Daten integrieren, Eingabe-Formulare und Reports gestalten und Workflows mit dezidierten User-Berechtigungen definieren. Im nächsten Schritt sollen Pozesse für die Vertragsverwaltung, die Einkaufspreis-Steuerung und das Qualitätsmanagement umgesetzt werden. Die Microsoft Standardlösung, die bereits heute On-premise- und Cloud-Produkte in einer Hybrid-Architektur kombiniert, gewährleistet dabei einen jederzeit bedarfsgerecht skalierbaren und kosteneffizienten Systemausbau.

Die Projekt-Highlights

  • Komplexe Geschäftsprozesse digitalisiert, automatisiert und standardisiert
  • Transparente Workflows, aktive Nutzerführung mit Warnfunktionen
  • Anwenderfreundliche Nutzeroberfläche für ausgefeilte BI- und MLArchitektur
  • Schnelle Analyse und übersichtliche Visualisierung von Daten
  • Flexible Integration diverser Vorsysteme und Dateiformen
  • Effiziente und sichere Rechnungsprüfung und -Bearbeitung
  • Präziser Forecast mit maschinellen Vorschlagswerten
  • Sichere stragische und operative Steuerung mehrjähriger Launching-Projekte
  • Einheitliches Web-Portal mit zentraler Datenbasis für alle Fachbereiche
  • Valide Daten und Ergebnisse durch Automatisierung
  • Excel-Insellösungen reduziert
  • Investitionssichere, einfach skalierbare Standardsoftware

 

Mehr zu PUREN Pharma: Als deutsches Traditionsunternehmen mit einem über Jahrzehnte gewachsenen Produktportfolio für Praxis, Klinik und Selbstmedikation stellt PUREN die Weichen als ein zukunftsorientierter Partner im Gesundheitswesen. Mit über 120 kostengünstigen Produkten in Topqualität für den Einsatz in der Praxis, Klinik und Selbstmedikation bietet PUREN ein umfassendes, etabliertes Spektrum für fast alle relevanten Therapieoptionen. Durch umfassende Rabattverträge ist PUREN dabei ein starker Partner für Ärzte, Apotheken, Krankenkassen und Patienten zum Erhalt der Ökonomie im Gesundheitswesen. Es ist das erklärte Ziel von PUREN, durch hochwertige, preisgünstige Arzneimittel zur Gesunderhaltung aller Menschen beizutragen.

AI funktioniert anders als BI. Oder: Empfehlungen für die Verankerung von AI in Ihrem Unternehmen.

Erstellt am: Freitag, 20. September 2019 von Monika Düsterhöft

Obwohl sich AI und BI auf den ersten Blick mit demselben Thema, also mit Daten, deren Analyse und der Erkenntnisgewinnung daraus beschäftigen, ist es wichtig zu verstehen, dass AI anders funktioniert als BI.

Bei BI fußt das methodische Vorgehen auf einem Gegenstromverfahren, dessen Ziel es ist, eine strukturierte Datenhaltung, in der Regel ein Datawarehouse, mit all den notwendigen Daten aufzubauen, um definierte KPIs möglichst akkurat ausspielen zu können.

Die AI hingegen stellt Werkzeuge, um einen explorativen Prozess zu begleiten, der sich mit Target Scoping, Data Understanding, Data Preparation und Modelling, Evaluation und Deployment beschäftigt – und zwar ergebnisoffen, inklusive „Lizenz zum Scheitern“, wenn Analyseideen in manchen Fällen in einer Sackgasse landen.

AI hat die Lizenz zum Scheitern

Im Zweifel heißt es zurück auf Start und checken, ob das gesetzte Ziel mit den vorhandenen Daten überhaupt zu erreichen ist. Oder ob man eventuell andere Erkenntnisse gewonnen hat, die nichts mit der ursprünglichen Zielsetzung zu tun haben oder diese sogar auf den Kopf stellen.

So kann sich beispielsweise nach der AI-basierten Analyse der Kundendatenbasis herausstellen, dass ein Angebot immer an eine völlig falsch segmentierte Zielgruppe ausgespielt worden ist. Es könnte sich erweisen, dass ein Testzyklus keinerlei Einfluss auf das am Ende tatsächlich erzielte Ergebnis hatte, oder eine Mustererkennung könnte Next-Best-Action oder Next-Best-Offer-Empfehlungen nahelegen, die erst durch das Einbeziehen von Social-Media-Aktivitäten sichtbar geworden sind.

Um nun die in Ihrem Unternehmen schlummernden Potenziale und Einsatzfelder für AI zu finden, sollten Sie nicht einfach nur versuchen bekannte AI Use Cases zu kopieren. Ebenso wenig zielführend ist es, sich ohne passende Methodik auf Ideenjagd für denkbare AI-Projekte, AI-Angebote oder AI-Lösungen zu begeben.

Unsere klare Empfehlung lautet stattdessen: Schauen Sie sich Ihre vorhandenen Prozesse, Produkte und Services an. Identifizieren Sie Brüche und formulieren Sie Wünsche und Ziele, was Sie gerne effizienter, zielgerichteter, transparenter, smarter, on top erreichen wollen.

AI als Werkzeug verstehen

Denken Sie AI als Werkzeug, das Ihnen helfen kann, Muster und Auffälligkeiten zu entdecken und damit den Maßnahmen, die zum gesetzten Ziel führen, näher zu kommen. Oder schauen Sie sich Prozesse unter dem Aspekt der Wiederholbarkeit oder Effizienzsteigerung an und arbeiten Sie die Abschnitte heraus, die von einem Algorithmus gelernt und übernommen werden können.

AI kann nicht nur neue Business Modelle ermöglichen, AI verfügt über ausgereifte Tools, die Ihnen schon heute dabei helfen, etablierte Prozesse zu optimieren und vorhandene Produkte oder Angebote weiter auszubauen. Identifizieren Sie die dafür vorhandenen Daten und Datenquellen, bewerten Sie deren Umfang und Qualität und definieren Sie, wo die Daten zusammengeführt und gespeichert werden sollen, um für das Arbeiten mit AI zur Verfügung zu stehen.

Als geeignetes Konzept hierfür hat sich ein Data Lake erwiesen, in dem sowohl strukturierte als auch polystrukturierte Daten verwaltet werden. Denn im Data Lake kommt die BI-Welt mit Big Data als Grundlage für AI-Anwendungen zusammen.

Egal ob sie in einer Prozessoptimierung oder in einer Produkt- oder Service-Diversifizierung mündet, soll der Einsatz von AI nachhaltig erfolgreich sein, ist ein weiterer Punkt zu berücksichtigen: setzen Sie AI-Vorhaben immer unter Einbeziehung der Organisation auf.

Ein quasi im Reagenzglas entstandenes AI-Ergebnis zurück in die Linienorganisation zu führen, ist eine riesige Herausforderung, denn die Akzeptanz spielt auch bei AI, wie bei allen Innovations- und Change-Prozessen, eine wesentliche Rolle.

AI erlebbar machen

Machen Sie also Beobachter zu Beteiligten, um typische Aversion gegen aufoktroyierte Themen, an denen man nicht selbst mitgewirkt hat, zu vermeiden und bauen Sie parallel zur Entwicklung des AI-Projektes das Verständnis der Mitarbeiter für die Art und Weise, wie AI funktioniert auf.

Dabei führt der Weg zu AI über den Zugang zu den Methoden. Mag es auch noch so verlockend sein, Ansätze und Use Cases einfach zu übernehmen, so empfiehlt sich doch auf jeden Fall zusätzlich der funktionsgetriebene Zugang. Denn dieser baut schneller das wichtige Verständnis auf und schärft darüber hinaus den Blick für die eigenen, ganz individuellen Potenziale. Ganz nach dem Motto: Verstehe was eine Anomalie ist und wie man sie aufdeckt, dann wirst Du auch schneller darauf kommen, wo sie in Deinem Unternehmen vorkommen könnte.

Und noch ein Tipp in Richtung der organisatorischen Verankerung: Bringen Sie nicht nur Daten in einen Zusammenhang, lösen Sie sich auch intern von künstlichen Grenzen und führen Sie BI- und Big-Data-Initiativen zusammen. Denn obwohl die Methodiken unterschiedlich sind, arbeiten beide oft mit denselben Daten und mit einer großen Schnittmenge an gleichen Werkzeugen.

AI integrieren

Datensilos und organisatorische Grenzen für die Datenarbeit machen in Zeiten von Digitalisierung und datengetriebener Unternehmen wenig Sinn; nur unternehmensweite Konzepte für das Datenmanagement inklusive BI, Big Data und Data Governance können künftig erfolgreich sein. Fördern Sie daher die Zusammenarbeit und schaffen Sie das Bewusstsein für die kollaborative Datenarbeit – je früher desto besser.

Sie wollen mehr zu den AI-Methoden erfahren?

Mein Tipp: Holen Sie sich die kostenfreien QUNIS AI FACTHSHEETS. Unser Data Science Experten geben einen Überblick zu neun erfolgreichen AI-Methoden. Sie erklären kompakt, welche AI-Methode sich wann am besten eignet, welche Fragestellungen damit konkret beantwortet werden und welche Daten erforderlich sind. QUNIS AI FACTSHEETS

Hilfe im Dschungel der Analytics Tools. Wir haben den Markt für Sie sondiert.

Erstellt am: Dienstag, 16. Juli 2019 von Monika Düsterhöft

Kaum ein Segment im Softwaremarkt unterliegt derzeit so vielen Veränderungen wie das der analytischen Werkzeuge.

Jedes Jahr sprudeln neue Produkte auf den Markt: branchenspezifische Nischenprodukte, Produkte für spezielle Aufgabenstellungen wie Textanalysen, Produkte für spezielle Fachabteilungen wie das Marketing, und, und, und…. Hinzu kommen noch umfangreiche Analytics-Plattformen, die versuchen, viele Anwendungsbereiche abzudecken oder Nutzer verschiedenster Kompetenzstufen anzusprechen.

Manche Tools setzen zudem auf einfache Zusammenarbeit in Teams, andere auf automatisiertes Reporting oder auf gute Visualisierungsmöglichkeiten. Jedes Produkt hat seine Vor- und Nachteile und ist beim heutigen Entwicklungs- und Innovationsdruck sicher noch nicht am Ende seiner Fähigkeiten angekommen. Nicht alle Produkte werden sich auf Dauer am Markt durchsetzen können – alle Produkte werden sich aber mit Sicherheit weiterentwickeln.

Man muss nicht zwingend Data-Science-Profi sein.

Der derzeitige Markttrend geht in Richtung Augmented Analytics. Dies bedeutet, mit den entsprechenden Werkzeugen können auch mathematisch und statistisch versierte Fachanwender und Citizen Data Scientisten Künstliche Intelligenz für Ihre Datenauswertung nutzen. Denn mittels Artificial Intelligence (AI) und Machine Learning werden Analyseschritte wie die Auswahl des richtigen Algorithmus von den Tools automatisiert, so dass der Nutzer kein Data-Science-Profi sein muss, um bestimmte Data-Science-Analysen durchführen zu können.

Es werden zum Beispiel Daten mit einer Clusteranalyse gruppiert, ohne dass der Nutzer verstehen muss, was im Hintergrund passiert. Ebenso können mit einem Klick Umsätze oder ähnliche geschäftsrelevante Daten mittels Zeitreihenanalysen vorhergesagt werden. In manchen Tools kann zudem durch die Einbettung von AI die Suche nach relevanten Daten mittels Sprachsteuerung oder Google-ähnlicher Suchfunktionen erleichtert werden. All das rangiert unter Augmented Analytics und gibt einen Eindruck davon, wie sich der Markt an Analytics-Werkzeugen weiter wandeln wird.

Welches Tool passt zu mir?

Bei der Vielzahl an Produkten und dem stetigen Wandel ist es schwer, den Überblick zu behalten. Wir haben den Markt gescannt und die Tools anhand typischer Nutzeranforderungen segmentiert.

  • Marktsegment 1: Reportingwerkzeuge
  • Marktsegment 2: BI & Analytics Suiten
  • Marktsegment 3:  Machine Learning (ML) & Data Science (DS) Plattformen
  • Marktsegment 4: Integrierte Entwicklungsumgebungen (IDEs) und Notebooks

Diese Segmentierung soll Ihnen helfen, das für Sie passende Tool zu finden. Um nun die für Sie passende Zuordnung zu identifizieren machen Sie sich bewusst, was Sie von dem Analysewerkzeug erwarten. Folgende Fragen unterstützen Sie dabei:

  • Reichen starre und einfache Visualisierungen von Daten, die sich als Bilddatei oder Tabelle abspeichern können?
  • Sollen mehrere Nutzer in einer explorativen Analyse zusammenarbeiten können?
  • Wenn ja, inwiefern soll die Zusammenarbeit unterstützt werden?
  • Nutzer welcher Fähigkeitsstufen sollen kollaborieren?
  • Wie ist deren Aufgabenverteilung?
  • Welche Anforderungen bestehen bezüglich Visualisierungen, statistischen und Machine-Learning-Funktionalitäten?
  • Inwiefern soll das Tool Data-Science-Prozesse wie das Trainieren von ML-Modellen unterstützen?

Mit Antworten auf diese Fragen sehen Sie schnell, in welchem Marktsegment sich das zu Ihren Anforderungen passende Tool befindet. Reicht Ihnen ein Reportingwerkzeug (Marktsegment 1) oder suchen Sie eher ein Tool für einen Power User (Marktsegment 2)? Oder gehen die Nutzer schon einen Schritt weiter in Richtung Data Science (Marktsegment 3)? Oder wollen Ihre Nutzer vollste Flexibilität und scheuen sich nicht vor anspruchsvoller Programmierung in Entwicklungsumgebungen (Marktsegment 4).

Marktsegmentierung von Analyse-Werkzeugen 

Sie fallen in mehrere Segmente? Kein Problem.

Die Anforderungen und Fähigkeiten der Nutzer in Ihrem Unternehmen gehen weit auseinander, so dass Sie nicht nur EIN relevantes Marktsegment für sich identifizieren? Keine Angst, das ist normal. Mit der richtigen Strategie und einem durchdachten Datenmanagementkonzept können diverse Tools auch problemlos miteinander kombiniert werden. Gerne unterstützen wir Sie hier bei der Auswahl und Implementierung, so dass Sie in Ihrem Unternehmen die datenbasierte Entscheidungsfindung mit Technologie der neuesten Generation schnellstens vorantreiben können.

Mein Tipp: Denken Sie zudem daran, dass die Nutzer mit dem Werkzeug gerne arbeiten und beziehen Sie diese in die Auswahl mit ein. Ich als Data Scientistin kann Ihnen sagen: „Nichts erschwert die Kreativität bei der explorativen Analyse mehr als eine Software, mit der man sich nicht wohl fühlt.“

In diesem Sinne, nutzen Sie unsere Segmentierung zur Orientierung und sprechen Sie uns gerne an. Ich freue  mich auf den Austausch mit Ihnen!

Übrigens – unsere beliebtesten Data Science Algorithmen haben wir ebenfalls übersichtlich für Sie zusammengestellt. Sie finden diese direkt hier auf unserem kostenfreien QUNIS MACHINE LEARNING CHEAT SHEET

CDS – der Citizen Data Scientist als Weg aus dem Analytics-Ressourcen-Engpass

Erstellt am: Montag, 18. März 2019 von Monika Düsterhöft

Für die Umsetzung von Advanced-Analytics-Vorhaben ist eine durchdachte Datenstrategie unverzichtbar. Sie regelt alle Fragen rund um die technische Systemintegration, die Data Governance und das unternehmensweite Data Quality Management (DQM).

Darüber hinaus gibt es neue fachliche Anforderungen und Aufgabenfelder wie die Definition komplexer Algorithmen für das Heben wirtschaftlicher Potenziale oder das Deployment der entstandenen Data-Science-Services. Der Data Scientist nimmt bei diesen Aufgaben eine der zentralen Schlüsselrollen ein. 

Neue Advanced-Analytics-Aufgaben benötigen Data Scientisten mit vielfältigen mathematischen, technischen und prozessualen Skills.

Mit seinem tiefen Einblick in die Fachbereiche formuliert der Data Scientist die Projektanforderungen, kümmert sich um die Themen Datenmanagement und Data Quality Management unter Beachtung der Data Governance und übernimmt die Definition von Datenmodellen und Algorithmen. Er hat tiefe mathematisch-statistische Kenntnisse, kann programmieren, kennt sich mit Datenschutz und sonstigen Compliance-Regeln aus und verfügt über umfangreiches Business-Know-how.

Kurzum, der Data Scientist ist ein Allrounder mit viel Spezialwissen und umfassender Erfahrung. Kein Wunder daher, dass diese Fachkräfte äußerst gefragt und ziemlich rar sind und dass viele Digitalisierungsvorhaben schlichtweg wegen dieser fehlenden Skills und Ressourcen stagnieren.

Arbeitsteilung, Tools und das Konzept des Citizen Data Scientist (CDS) können Abhilfe aus dem Ressourcen-Dilemma schaffen.

Ein Ansatzpunkt ist die Entlastung des Data Scientists von Routinen im Datenmanagement. Speziell bei der Datenakquisition können technisch versierte Experten, die sogenannten Data Engineers, den Data Scientist gut unterstützen. Ein zweiter Ansatzpunkt, der sich derzeit am Markt für analytische Applikationen abzeichnet, ist die zunehmende Verlagerung von analytischem Know-how in die Systemwelt.

Etablierte BI-Anbieter beispielsweise erweitern ihr Portfolio um Datenvisualisierungstools, die Visual Analytics ohne Programmieraufwand unterstützen. Per Drag-and-drop können hier Datenströme hinzugefügt, verbunden und analysiert werden, und im Hintergrund laufen die neuesten Algorithmen für die fortgeschrittene Datenanalyse. Auch die Branche der AI-Spezialisten liefert unter der Bezeichnung „Augmented Analytics“ anwenderorientierte Werkzeuge, die Funktionen zur Automatisierung der Datenaufbereitung, Erkenntnisfindung und Datenanalyse enthalten.

Mithilfe solcher anwenderorientierten Frontends können geübte BI Power User, die ein mathematisch-statistisches Grundverständnis sowie Interesse an Analytics mitbringen, bestimmte Aufgabenfelder der Data Science übernehmen und so neben den Data Engineers ebenfalls ihren Teil dazu beitragen, das begehrte Skillset des Data Scientists zu erfüllen. Es kristallisiert sich ein neues Rollenbild heraus. Wir sprechen vom Citizen Data Scientist (CDS), der mit den richtigen Tools in der Lage ist, analytische Aufgaben auszuführen und auch selbst Modelle zu erstellen, die fortgeschrittene Analysen, Vorhersagen und präskriptive Funktionen enthalten.

Die Ausbildung von CDS ist ein aussichtsreicher Ansatzpunkt, um analytische Kompetenzen im Unternehmen aufzubauen.

Im Grunde kann jeder Fachanwender oder IT-Spezialist, der ein Grundverständnis für Datenarbeit sowie statistisches und mathematisches Know-how mitbringt, den Umgang mit Self-Service-Data-Science-Werkzeugen erlernen. Besonders geeignet sind BI Power User, die lernbereit und neugierig darauf sind, Data Science und vorhersagende Algorithmen für ihre Geschäftsprozesse zu erkunden.

Im Gegensatz zum klassischen BI-Anwender, der auf der Basis vorgefertigter Daten-Cubes arbeitet, bewegt sich der CDS dabei jedoch auch auf der Ebene der Rohdaten, um explorativ neue Erkenntnisse zu generieren. Weitere aussichtsreiche Kandidaten für Citizen Data Science sind Ingenieure mit Hintergrundwissen aus Mathematik, Statistik und Modellierung.

Die neuen Data-Science-Experten benötigen Rückendeckung und Unterstützung für ihr Tätigkeitsfeld.

Für ihre Aufgabenfelder bringen unternehmensintern ausgebildete CDS neben ihren analytischen Fähigkeiten auch ihr bereits vorhandenes Markt- und Branchen-Know-how sowie das Wissen um interne Prozessen in die Datenanalysen mit ein. Ein wesentlicher und nicht zu unterschätzender Vorteil. Sie brauchen aber auch Rückendeckung durch das Management sowie Unterstützung durch die interne IT.

CDS benötigen mehr Daten, zum Teil auch mehr ungefilterte Daten und sie brauchen IT-Umgebungen, in denen sie mithilfe aktueller Tools und Technologien experimentieren und Prototypen von Modellen und Applikationen bauen können. Zudem müssen sie den zeitlichen Freiraum für ihre Datenrecherchen erhalten.

Ein versierter Partner an der Seite, der neben der expliziten Data-Science-Expertise auch Erfahrung aus anderen Projekten mit einbringt und die neuen CDS auf ihrem Weg begleitet, ist eine weitere äußerst wertvolle Hilfe und ein wichtiger Baustein für den Erfolg einer Advanced-Analytics-Initiative.

Wenn die Rahmenbedingungen stimmen, können sich Unternehmen auf diese Weise pragmatisch wertvolle Personalressourcen aus den eigenen Reihen erschließen und richtig Schubkraft in ihre Digitalisierungsprojekte bringen.

Mein Tipp: Besuchen Sie das CA-Seminar – Deep Dive Advanced Analytics – Machine Learning in der Praxis mit „R“ – und lernen Sie das Tagesgeschäft eines Data Scientist besser kennen. Das Seminar wird von und mit QUNIS Experten durchgeführt und findet im Rahmen der Kooperation mit der CA Controller Akademie und des Ausbildungsprogramms zum Information Manager statt. Mehr zu allen CA-Seminaren finden Sie hier.

Data-Science-Services einfach und stabil bereitstellen mit dem AHUB Deployment Framework.

Datenqualität in BI und Big Data – wo liegt der Unterschied und wie funktioniert es zusammen?

Erstellt am: Freitag, 4. Januar 2019 von Monika Düsterhöft

In einer klassischen BI-Umgebung lagern typischerweise strukturierte Daten aus internen Vorsystemen wie Enterprise Resource Planning (ERP), Customer Relationship Management (CRM) oder der Buchhaltung. Für die Qualitätssicherung gibt es Best Practices und erprobte Technologien – man weiß genau, wie und wo man bei der Optimierung ansetzen kann, wenn der Bedarf da ist.

Unklar ist hingegen die Qualitätssicherung bei den für Predictive Analytics nötigen Big-Data-Quellen. Nutzen und Wertschöpfung der anvisierten Vorhersagemodelle hängt auch hier maßgeblich von der Qualität der zugrundeliegenden Daten ab. Systemarchitekten diskutieren nun, wie sie die Qualität von riesigen semi- und polystrukturierten Daten bewerten und sichern, welche Systemarchitekturen dabei ins Spiel kommen und wie das Datenmanagement funktioniert.

Das Data Warehouse bleibt der Single Point of Truth

Das klassische Data Warehouse hat als Kern einer typischen BI-Umgebung auch in der Welt der fortgeschrittenen Analysen seine Daseinsberechtigung. Es ist die beste Grundlage für standardisierte Berichts- und Analyseprozesse mit den unverzichtbaren Finanz- und Steuerungskennzahlen. Geht es um vorausschauende Unternehmenssteuerung, so sind diese Berichtsstandards um Trendanalysen und Prognosen aus der Big-Data-Welt zu ergänzen. In der Praxis erweist sich der sogenannte Data Lake als pragmatischer Implementierungsansatz, um hochstrukturierte Daten aus Transaktionssystemen und wenig strukturierte Big Data zusammenzuführen.

Ausgehend von der bewährten BI-Architektur mit offenen Schnittstellen lassen sich damit Big-Data-Komponenten in eine vorhandene Informationsplattform integrieren. Wichtig dabei ist, dass das zentrale Data Warehouse seinen Anspruch als Single Point of Truth im Unternehmen behält. Will man das Datenmanagement und die Qualität der Datenbasis für Advanced Analytics optimieren, ist es daher eine gute Idee, mit dem meist vorhandenen Data Warehouse zu starten.

Wie die Projektpraxis zeigt, besteht hier nämlich oft noch Handlungsbedarf. Abgesehen von Qualitätsmängeln und inkonsistenten Datenstrukturen wird mit dem Trend zu Self-Service-BI auch das bekannte Problem von Insellösungen und Datensilos wieder akut, das früher durch diverse Excel-Lösungen der Fachabteilungen verursacht wurde. Self-Service im Fachbereich ist praktisch und hat seine Berechtigung, aber das zentrale Business Intelligence Competence Center oder der BI-Verantwortliche müssen die Datenströme unter Kontrolle halten und darauf achten, dass der Single Point of Truth nicht ausgehebelt wird.

Data Warehouse Automation sichert die Datenqualität

Sind die Datenströme gut modelliert, bestehen große Chancen für eine dauerhaft hohe Datenqualität im BI-System. Durchweg strukturierte Daten von der operativen bis zur dispositiven Ebene, standardisierte Auswertungsverfahren und mächtige ETL-Werkzeuge (Extraktion, Transformation, Laden) mit integrierten Prüffunktionen ermöglichen eine hohe Automatisierung der Datenauswertung.

Für den effizienten Aufbau, die Anpassung und die Optimierung von Data Warehouses gibt es inzwischen ausgereifte Verfahren, die Standardisierung und Automatisierung erhöhen und damit die Fehlerrisiken auf ein Minimum senken. Diese Data Warehouse Automation beruht auf Frameworks, die bereits Best Practices für ETL nach etablierten Verfahren sowie Prüflogiken zur Sicherung der Datenqualität enthalten beziehungsweise deren Modellierung auf Meta-Ebene unterstützen. Neben einer effizienten Entwicklung und Administration vermeidet dieser lösungsorientierte Ansatz Konstruktionsfehler und sorgt dafür, dass für eine saubere Datenverarbeitung Best Practices zum Einsatz kommen.

Da Business Intelligence die Business-Realität möglichst genau abbilden will, ist ein hohe Datenqualität unverzichtbar. Klassische Kriterien wie Exaktheit und Vollständigkeit sind dabei zentrale Anforderungen. Schon ein Datenfehler oder eine Lücke im operativen Bestand kann das Ergebnis einer aggregierten Kennzahl verfälschen. Im Rahmen des internen und externen Berichtswesens stehen damit schnell falsche Entscheidungen oder Compliance-Verstöße im Raum.

Bei Big Data steuert der Business Case die Governance

In der Big-Data-Welt gestaltet sich die Datenqualität anders. Hier geht es zunächst darum, die relevanten Datenquellen zu bestimmen, die Daten abzuholen und zu speichern. Das ist nicht immer trivial angesichts einer Bandbreite von Daten aus dem Internet of Things, unstrukturierten Informationen aus Blogs und Social Networks, Sensordaten aus Kassensystemen und Produktionsanlagen, Messdaten aus Leitungsnetzen bis zu Datensätzen aus Navigationssystemen.

Im Gegensatz zur BI-Welt bestehen hier für die interne Datenarbeit keine allgemeingültigen Geschäftsregeln und Standards. Da es um die statistische Auswertung von Massendaten geht, sind die BI-typischen Qualitätskriterien Vollständigkeit und Exaktheit weniger wichtig. Im Rahmen der statistischen Verfahren fallen einzelne Fehler und Lücken nicht ins Gewicht, und Ausreißer lassen sich regelbasiert eliminieren. Wie groß die kritische Masse für belastbare Ergebnisse ist, wie genau, vollständig oder aktuell die Datenbasis sein muss und in welcher Form Informationen nutzbar gemacht werden, das ist für Big-Data-Analysen fallbezogen zu klären.

Die Vielfalt der Einsatzbereiche und damit die Rahmenbedingungen für die Bewertung und Bearbeitung von Daten sind nahezu unbegrenzt. Geht es etwa beim Internet of Things um die grobe Ressourcenplanung von Wartungsarbeiten für angebundene Geräte, sind Ausfälle einzelner Geräte-Meldesysteme irrelevant, da die Ermittlung von Peaks ausreicht. Im Rahmen von Predictive Maintenance ist dagegen jede konkrete Ausfallmeldung eines Gerätes wichtig. Für Kundenzufriedenheitsindizes auf Basis von Weblog-Analysen kommt es nicht auf jeden Beitrag an. Vielmehr geht es darum, Trends abzuleiten und diese in sinnvoll definierte Kennzahlen zu überführen.

Bei Big-Data-Anwendungen fallen also Datenqualitätsmanagement und Governance ebenso individuell aus wie das Analyseszenario des jeweiligen Business Case. In hoch automatisierten Anwendungen wie Autonomes Fahren oder Predictive Maintanance, in denen ausschließlich Maschinen über die Ergebnisse und Auswirkungen von Datenanalyen entscheiden, ist die Data Governance besonders wichtig. Die Quellen von Big Data liegen häufig außerhalb des Einflussbereichs der internen Prozesse: Maschinen-Output, Nutzereingaben oder Internet-Datenströme lassen sich nicht über interne organisatorische Maßnahmen kontrollieren. Bei permanent fließenden, unstrukturierten Datenquellen wie Chatforen greifen auch die klassischen ETL-Methoden nicht, und Störungen wie etwa eine Leitungsunterbrechung können nicht durch Wiederholung oder das Wiederherstellen des Datenbestands ausgeglichen werden.

Eine profunde Konzeption sichert den Projekterfolg

Das Potenzial von Predictive Analytics ist riesig, und viele Unternehmen erschließen sich gerade neue Dimensionen der Informationsgewinnung. Durch Cloud-Betriebsmodelle lassen sich neue Anwendungen schnell und kosteneffizient umsetzen. Voraussetzung dafür ist eine profunde Konzeption, die den kompletten Wertschöpfungsprozess der Daten mit Blick auf ein präzise formuliertes Projektziel abdeckt. Für ein erfolgreiches Projekt müssen anspruchsvolle Fragen der Fachlichkeit, Technik und Organisation geklärt werden. Hier empfiehlt es sich, die Erfahrung eines ganzheitlich orientierten Beratungsunternehmens hinzuzuziehen, um sich zeitraubende Umwege und schmerzhafte Lernzyklen zu ersparen.

Mehr zum QUNIS Data Lake Konzept erfahren.

Softbots als nächste Evolutionsstufe in der Anwendungsentwicklung

Erstellt am: Freitag, 24. August 2018 von Malte Hoffmann

Ein Chat- oder noch besser Softbot – je nachdem, wie leistungsfähig sein Kernprogramm ist – sehe ich als beste Idee einer möglichen Weiterentwicklung des klassischen Anwendungsprogramms, die mir seit langem begegnet ist. Nennen wir diese Konstruktion im Nachfolgenden einfach Bot, um die Sache nicht unnötig zu verkomplizieren.

Digitaler bester Freund, Kollege und Ratgeber

Ein Bot kann so vieles sein – schlichte Frage-/Antwortmaschine, leicht und effizient bedienbarer FAQ-Service, umfassendes und weltumspannendes Auskunftsbüro, unbürokratisches, sympathisches Helferlein bei der Datenerfassung oder effizientes Hilfsinstrument bei Recherchearbeiten. Der Einsatz geht bis hin zum digitalen intelligenten Assistenten, der on Demand entweder BI-Analysen interaktiv durchführt oder hochkomplexe KI-Algorithmen zur Ausführung bringt oder mir ganz schlicht über einen Internetservice eine Pizza bestellt, wenn mich der kleine Hunger packt.

Die möglichen Anwendungsfälle sind von unbegrenzter Mannigfaltigkeit. Vor allem aber ist ein Bot ein treuer, intelligenter – und wenn der Entwickler sich ein wenig Mühe mit dem Charakter gibt auch recht liebenswürdiger – vor allem aber nimmermüder hilfreicher Geselle, der mich, sei es privat oder auch und ganz explizit geschäftlich, angenehm und effizient unterstützend durch meinen Tag begleiten kann.

Funktion und Technik kurz erklärt

Um zu verstehen, wie so ein Bot technisch funktioniert, befassen wir uns am besten mit den Komponenten, aus denen er besteht.

Da haben wir zum einen die Schnittstellen zu seiner Umwelt – in der Grafik links und rechts außen dargestellt. Hier sitzt der Mensch, der mit dem Bot in Interaktion tritt und zwar üblicherweise mittels Text – also Tippen – oder Sprache – also verbal.

Kommt die Sprachsteuerung zum Einsatz, braucht es dafür auf beiden Seiten jedenfalls die dafür vorgesehenen Künstliche-Intelligenz (KI)-Bausteine – zum einen für die automatische Spracherkennung, also die Umwandlung des gesprochenen Wortes in maschinenlesbaren Text – und  zum anderen für die Sprachsynthese, also die Umwandlung des textbasierten Maschinenoutputs in eine künstliche Sprechstimme.

Beide Verfahren basieren heutzutage immer mehr auf Deep Learning Methoden, die einen sehr positiven Einfluss auf die Qualität des Ergebnisses haben – auf der einen Seite die Minimierung der Fehlerrate bei der Spracherkennung, auf der anderen Seite die Verbesserung der Natürlichkeit der Sprachmelodie.

Die Interpretation des Gesagten

Nachdem nun also die Benutzereingabe in maschinenlesbarer Form vorliegt, folgt oftmals als optionale Komponente ein weiterer KI-Baustein, der auf den ersten Blick eventuell gar nicht weiter als solcher auffällt, aber dennoch eine sehr essentielle Funktionalität darstellt. Ich spreche hier von der Notwendigkeit der Interpretation des Gesagten, also der Feststellung des besonderen Wunsches, der Intention des Anwenders.

Wie Sie vielleicht schon selbst beim Chatten mit einem Bot bemerkt haben, können Sie in mehr oder weniger ganzen, auch umgangssprachlichen Sätzen mit ihm kommunizieren. Weder ist es nötig, sich bestimmte Sprachbefehle zu merken oder aber verabredete Wortlaute zu verwenden; selbst kleine Tippfehler werden großzügig toleriert.

Wie funktioniert das? Nun, hier kommt eine weitere Disziplin der KI zum Einsatz, das Natural Language Processing (NLP). Es übernimmt die Interpretation des Anwenderwunsches.

Zu guter Letzt, sozusagen im Zentrum des Geschehens befindet sich dann das Kernprogramm. Hier passiert quasi die Fleißarbeit, alle Programmschritte, die für die Erfüllung des Anwenderwunsches vollzogen werden müssen. Und da befinden wir uns in der traditionellen, wenngleich auch sehr stark dialogorientierten Anwendungsentwicklung, die aber auch hier ganz stark über den Einbezug von weiteren, individuellen KI-Komponenten intelligent gemacht werden kann.

Ein Wort noch zur Sprachsteuerung

Diejenigen Bots, die Stand heute vorrangig durch direkte Ansprache funktionieren, sind beispielsweise Alexa von Amazon, Google Home, Siri von Apple oder Cortana von Microsoft, um jetzt nur ein paar bekannte Vertreter zu nennen. Wir haben uns mittlerweile mit dem permanenten Lauschangriff seitens dieser treuen Gefährten arrangiert, ist es doch zu bequem, auf diese Weise mit den gewünschten Funktionen zu korrespondieren.

Was jedoch im privaten Umfeld so angenehm anmutet, gilt – noch? – nicht gleichermaßen für das professionelle Umfeld. Zumindest wird es heutzutage bisher eher nicht toleriert, wenn im Großraumbüro der Kollege nebenan permanent mit seinem Computer spricht, um seine Anweisungen durchzugeben – dies stößt noch zu sehr auf Irritationen, vergleichbar mit einem Sitznachbarn im Bus, der mit seinem Bekannten lautstark mobil telefoniert.

Weder schöner Traum noch ferne Zukunftsvision

Wenn Sie jetzt anhand dieser Detail-Informationen den Eindruck gewonnen haben sollten, die Entwicklung eines Bots sei sehr aufwändig und kompliziert, so stimmt das nur bedingt, denn mittlerweile gibt es dafür umfassende Hilfestellung. So hat beispielsweise Microsoft mit seinem Bot Framework eine für die sofortige Nutzbarkeit bereitstehende Rahmenhandlung geschaffen, mittels derer man einen einfachen Bot binnen weniger Minuten zum Laufen bringen kann.

Für die notwendigen KI-Funktionalitäten stehen fertig nutzbare sogenannte kognitive Services zur Verfügung, so beispielsweise die Applikation LUIS – Language Understanding Intelligent System – eine Applikation für die Interpretation der Anwenderwünsche anhand der eingegebenen Anweisungen, die ich ganz nach den umzusetzenden Funktionalitäten gestalten kann. Hier definiere ich die zu realisierenden Intentionen und hinterlege diese mit dazu passenden Redewendungen, auf die ich anschließend einen Machine Learning Algorithmus trainiere, so dass auch sinnverwandte Formulierungen verstanden werden.

So kann sich der Entwickler voll und ganz auf die Umsetzung der Kernfunktionalität konzentrieren, für die er aus einem reichhaltigen Fundus an kognitiven KI- und anderen Services schöpfen kann, während der Bot Connector Service als universelle Schnittstelle dafür Sorge trägt, dass der Bot ohne Änderung des Programms über zahlreiche bekannte Kanäle angesprochen werden kann – sei es via Facebook Messenger, Microsoft Teams, Skype und viele mehr;  selbst Cortana steht für eine Anbindung zur Verfügung.

Denn schlussendlich ist der Bot ja ein Anwendungsprogramm ohne eigene grafische Benutzeroberfläche, benötigt also immer noch ein weiteres Medium für den Dialog mit dem Anwender.

Flexible Anwendungen mit großem Potential

Sicherlich haben all die großen ERP-, CRM- und übrigen Datenbankanwendungen mit unternehmensweitem Charakter unverändert und auch künftig ihre Daseinsberechtigung. Die flexiblen und wendigen Chat- und Softbots jedoch bergen ein enormes Potential, all die Aufgaben zu lösen, für die es bis dato kein spezielles oder aber viele kleine Programme brauchte.

War es bislang nur höhergestellten Personen im Unternehmen oder im Privaten vergönnt, einen persönlichen Assistenten zur Hand zu haben, der all die kleinen lästigen Aufgaben erfüllte, so rückt die enorme Vielfalt jetzt schon verfügbarer kleiner und großer KI-basierter Funktionalitäten den intelligenten digitalen Assistenten in greifbare Nähe. Es sollte kein Wunschtraum in ferner Zukunft mehr sein, sondern mit den zur Verfügung gestellten Mitteln und cloudbasierten Betreiberservices direkt in die Tat umgesetzt werden können.

Best-Practice zum Anfassen

Mit MrQ bietet QUNIS eine Best-Practice-Lösung und macht damit die Funktionsweise eines Softbots bestehend aus dialogorientierter klassischer Anwendungsentwicklung, Artifical Intelligence (AI), Cloud und Machine Learning direkt erlebbar. Darüber hinaus bildet MrQ den Grundstock für die Entwicklung kundenspezifischer Prototypen und Softbots. MrQ nutzt das Microsoft Bot Framework und die Azure Cognitive Services, betrieben wird MrQ als Azure Managed Service.

Mehr von MrQ finden Sie unter www.mr-qunis.com, auf seiner Facebook-Seite oder in der QUNIS-App.

Bereit für Künstliche Intelligenz?

Erstellt am: Donnerstag, 14. Juni 2018 von Monika Düsterhöft

Wir alle kennen den Begriff Künstliche Intelligenz und haben über das Science-Fiction-Genre Bekanntschaft mit An droiden oder dem Supercomputer Deep Thought gemacht. Wir nutzen Internet-Suchmaschinen oder Sprachassistenten, und in den Medien wird täglich über Innovationen wie selbstfahrende Autos, intelligente meinungsbildende Algorithmen oder menschlich anmutende, sogar mit Gefühlen ausgestattete Pflege- und Service-Roboter berichtet. Veränderungen, die KI für unsere Lebens-, Geschäfts- und Arbeitswelt mit sich bringt, werden in der kompletten Bandbreite von Panik über Skepsis und Besorgnis bis hin zur totalen Faszination diskutiert. Und dass Daten sowie der intelligente Umgang damit die Basis dafür bilden, ist kein Geheimnis mehr.

In diesem Zusammenhang den Umsetzungstand von KI in den Unternehmen zu erfragen und dabei den Fokus auf die Gruppe der Controller zu legen, erschien uns als logisch und interessant. Denn gerade die Controller sind es, die sich schon lange mit dem Thema Datenauswertung beschäftigen und auf dem Weg der digitalen Transformation zum datengetriebenen Unternehmen viele entscheidende Stationen mitgestaltet haben. Sie sind es, die innovativen Schlüsseltechnologien und Verfahren der Datenanalyse aufgegriffen, weiterentwickelt und bis hin zur Etablierung als Standardtechnologie vorangetrieben haben. Waren BI, OLAP, Big Data und Advanced Analytics namentlich bis dato zwar eher im Umfeld der Unternehmenssteuerung anzutreffen, so sind sie nun Teil von Digitalisierungsinitiativen und Innovationsprojekten.

Gemeinsam mit der Controller Akademie haben wir von QUNIS eine Anwenderbefragung zur Organisation von Projekten mit Big Data und Advanced Analytics durchgeführt und sind zu folgenden Ergebnissen gelangt: Eine große Mehrheit der Unternehmen gaben an, dass Advanced Analytics bzw. KI-Methoden hoch strategische Themen sind und eine wichtige Rolle bei der digitalen Transformation spielen. Dabei setzen 44 Prozent mit Advanced Analytics noch primär auf interne Prozessverbesserungen. Genauso viele Unternehmen sehen diese Methoden jedoch als entscheidend für zukünftige Innovationen rund um ihre Produkte und Services. Trotz der bestehenden Unsicherheiten hinsichtlich der Umsetzung erklären die Unternehmen fast durchweg ihre hohe Investitionsbereitschaft.

Beim Thema Datenmanagement ist den meisten sehr wohl klar, dass die klassische BI-Architektur mit Data Warehouse (DWH) nur begrenzt für die neuen Anwendungsbereiche geeignet ist. Die Kombination vorhandener Daten, die oft in einem DWH organisiert sind, mit weiteren internen oder externen Datenquellen und -formaten, wird als eine der größten Herausforderungen genannt. Dazu gehört auch die offene Frage, wie sich eine flexible Datenarchitektur schaffen lässt, welche die bisherige BI- mit der Big-Data-Welt zusammenführt und somit auch Investitionen schützt. Für diese Verbindung hat sich das Data-Lake-Konzept in der Praxis als sehr tragfähige Lösung bewährt. Dieses kann den Auf- und Umbau hin zu agileren und offenen Architekturen unterstützen.

Aber auch organisatorisch müssen für das datengetriebene Unternehmen die richtigen Weichen gestellt werden. Ohne klare Definitionen der Datenhoheit mit Verantwortlichkeiten, die über Rollen wie Data Owner, Data Scientist oder Data Engineer im Rahmen einer Data Governance festgelegt sind, nutzt das beste Systemkonzept nichts.

Einig ist man sich zudem darüber, dass die Verantwortlichen über spezifische Skills verfügen müssen, die über bisherige Anforderungen im BI-Bereich hinausgehen. Falls das BI-Team sich um Advanced Analytics kümmern sollte, halten fast 60 Prozent der Befragten es für notwendig, dass hier zusätzliche Kompetenzen aufgebaut werden. Neben Spezialisten für statistisch-mathematische Methoden sind dabei auch Experten gefragt, die hochkomplexe Auswertungen in verständliche, businessrelevante Informationen übertragen.

Viele Unternehmen haben bereits gute Ideen, an welcher Stelle sie Advanced Analytics und KI-Methodik einsetzen könnten. Hinsichtlich der konkreten Umsetzung auf Basis praktikabler Use Cases tut man sich derzeit aber noch schwer. Hier sind Controller gefordert, ihre Erfahrung in der Datenanalyse einzubringen. Expertenhäuser wie QUNIS ergänzen und begleiten dies mit bereichsübergreifender, strategischer Fachkompetenz. Diese Kombination ist eine optimale Basis, um datengetriebene Geschäftsmodelle voranzubringen und neue Potenziale für das Unternehmen zu erschließen.

Alle Ergebnisse im Detail finden Sie hier KOMPLETTE STUDIE DOWNLOADEN

Keine Industrie 4.0 ohne Big Data und Künstliche Intelligenz

Erstellt am: Mittwoch, 14. Februar 2018 von Sascha

Mit der zunehmenden Praxis wächst auch die Zahl der Umfragen zu Industrie 4.0. So hat sich jetzt die Siemens Financial Services bei Herstellern und Beratungshäuser aus dem Bereich der Produktion und Wartung in elf Ländern umgehört, wo der Schuh drückt. Heraus kamen sechs Themenfelder, die Hersteller nach eigenen Aussagen aktuell angehen müssen:

  • Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0
  • Zugang zu Finanzierungen, die den erforderlichen Investitionszeitraum berücksichtigen
  • Aufbau einer Kooperationskultur, die notwendig ist, um gemeinsam am Erfolg in einer vernetzten Industrie-4.0-Welt zu arbeiten, ob im eigenen Unternehmen, in der Lieferkette oder branchenübergreifend (mehr zur Unternehmenskultur und Industrie 4.0 finden Sie hier)
  • Überwindung von Risiken bezüglich der Daten- und Internetsicherheit in einer Welt, in der sich große Mengen sensibler Daten durch das Internet bewegen
  • Umfassender Zugang zu einer ausreichenden Zahl an realen Beispielen für erfolgreiche digitale Transformation aus allen Fertigungssektoren
  • Spezialisierte strategische Managementkompetenzen zur Erarbeitung eines klaren Stufenplans, um Industrie 4.0 zu erreichen. Spezialisierte strategische Führungsqualität zur Entwicklung eines klaren, gestaffelten Plans, um Industrie 4.0 umzusetzen.

Laut der Autoren zeigen diese Aspekte, dass es mittlerweile nicht mehr darum geht, grundsätzlich die Notwendigkeit zur Digitalisierung und Automatisierung zu diskutieren. Vielmehr stehen mittlerweile praktische Fragen im Mittelpunkt, wie Organisation den Weg zur Industrie 4.0 schrittweise und mit Augenmaß gehen können – einschließlich laufender Qualitätskontrollen und RoI-Maßnahmen.

Es fehlt an Expertise für digitale Produkte und Künstliche Intelligenz

Von allen Themenfeldern wurde die „Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0“ als größte Herausforderung benannt. Es fehlt bis dato digitales Produktionswissen, welches es operativen Mitarbeitern ermöglicht, Maschinen- und Leistungsdaten auf ihren portablen Dashboards zu interpretieren und entsprechende Maßnahmen zu ergreifen. Ferner müssen „digitaler Wartungskompetenzen“ entstehen, wie es die Studienautoren nennen, also, dass Techniker auch das Know-how haben, um komplexe digitalisierte Betriebssysteme und Geräte instandzuhalten. Und schließlich bedarf es der Expertise für operative und strategische Analysen. Gemeint ist damit, dass man die Auswertung großer Datenmengen, die sich durch die enge Vernetzung von Maschinen, Anwendungen und Menschen künftig rasant erhöhen (Big Data) in den Griff bekommt. Diese Unmengen an Daten – einschließlich Produktionsdaten, Lieferkettendaten, Marktdaten und finanziellen Daten – erfassen und analysieren zu können, ist entscheidend um die eigene Wettbewerbsfähigkeit künftig zu erhalten bzw. zu verbessern.

Datenmanagement auf Industrie 4.0 vorbereiten

Voraussetzung dafür ist, dass Unternehmen zunächst ihr bisheriges Datenmanagement und ihre Dateninfrastruktur bewerten, ob und wie sich diese für die Erfassung und Analyse von Big Data weiterentwickeln lassen – ohne bisherige Investitionen deshalb gleich aufgeben zu müssen. Ebenso gehört zu Vorarbeiten eine Strategiediskussion sowie Auswahl von Use Cases. Schauen Sie sich einmal unsere Methodik für Big-Data-Umgebungen sowie unser Data Lake Konzept an, die unsere langjährige Projekterfahrung und Expertise auch in den neuen Technologien und Verfahren wie die der Künstlichen Intelligenz widerspiegeln!

Die Folgen von Industrie 4.0 für die Unternehmenskultur

Erstellt am: Montag, 29. Januar 2018 von Sascha

Es wird nicht genügen, wenn Unternehmen allein durch den Einsatz entsprechender Technologien versuchen, sich den neuen Anforderungen und Möglichkeiten einer Industrie 4.0 zu stellen. Vielmehr müssen sie den damit verbundenen gesellschaftlichen Wandel sehen und ihre Mitarbeiter darauf vorbereiten. So eines der Ergebnisse der Umfrage der Wirtschaftsprüfungsgesellschaft Deloitte „The Fourth Industrial Revolution is Here – Are You Ready?„. Laut Unternehmen wurden über 1600 C-Level-Führungskräfte aus 19 Ländern und zehn verschiedenen Branchen befragt, deren Unternehmen mehr als eine Milliarde US-Dollar Jahresumsatz erwirtschaften – darunter auch 100 Führungskräfte deutscher Unternehmen.
Geht es um die gesellschaftliche Breitenwirkung von Industrie 4.0, glaubt laut Studie eine große Mehrheit der Führungskräfte (87 Prozent), dass diese positiv für die künftige Entwicklung der Gesellschaft sei und „zu mehr Gerechtigkeit und Stabilität führen wird“. Verantwortlich dafür seien aber weniger Privatunternehmen, als zwischenstaatliche Kooperationen und Allianzen. Einen nennenswerten eigenen Beitrag zu dieser angeblich positiven Entwicklung sehen entsprechend nur ein Viertel der globalen Leader, in Deutschland sogar nur sechs Prozent der befragten Führungskräfte.

Keine Antwort auf die drohende Disruption

Skeptisch zeigen sich die Manager auch, ob ihr eigenes Unternehmen die „Disruption“ durch Industrie 4.0 überhaupt sicher überstehen wird. Nur 14 Prozent sind aktuell davon überzeugt, dass ihre Organisation vorbereit ist, das Potenzial von Industrie 4.0 in vollem Umfang nutzen zu können. Strategisch setzt die Mehrheit der Führungskräfte dabei den Fokus auf die Entwicklung neuer Produkte und Services sowie die Steigerung der Produktivität und Wachstum. Damit folgen sie eher einer traditionellen Ausrichtung, statt die Möglichkeiten von Industrie 4.0 zu nutzen, die durch Weiterentwicklung der Mitarbeiter oder Disruption im Wettbewerb entstehen können, so die Autoren der Studie. International sehen 40 Prozent der CXOs die Entstehung neuer Geschäfts- und Vertriebsmodelle im Rahmen von Industrie 4.0 als große strategische Herausforderung, hierzulande stimmen dem nur 26 Prozent der Befragten zu. Auch die Frage, wie wichtig es für Unternehmensführer ist, sich auf Innovation zu fokussieren, beantworten nur 29 Prozent der deutschen Führungskräfte positiv, während es international 40 Prozent sind.

Mitarbeiterschulung und Change Management

Diese zurückhaltende Sicht auf Industrie 4.0 spiegelt sich zudem in den Antworten wieder, wie denn derzeit die eigenen Mitarbeiter durch Weiterbildung und Change-Management auf den kommenden Wandel vorbereitet werden. Dies scheint umso nötiger, glaubt doch nur ein Viertel der befragten C-Level-Führungskräfte, dass ihr Unternehmen bereits über Mitarbeiter mit der benötigten Qualifikation sowie gut aufgestellte Teams verfügt. 86 Prozent aller internationalen als auch lokaler Manager wollen sich daher für die Weiterentwicklung ihrer Mitarbeiter für die neuen Anforderungen einsetzen. Doch die Autoren hegen Zweifel, ob diesen guten Vorsätzen auch Taten folgen werden, denn es gehe ja um nicht weniger als die Schaffung einer neuen Arbeitskultur, die Weiterbildung und die Gewinnung neuer Talente in den Mittelpunkt stellt. Bislang stehe aber zum Beispiel das HR-Thema weit hinten auf der CXO-Agenda, so Deloitte.