Archiv für die Kategorie Digitalisierung

Modern Data Worker: Wer sie sind, wie sie sich unterscheiden, was sie antreibt?

Erstellt am: Montag, 17. Januar 2022 von Monika Düsterhöft

Nicht nur die Menge und Verfügbarkeit von Daten, auch das Thema Datenarbeit und die Aufgaben, die sich drumherum ranken, haben sich in den letzten Jahren rasant verändert und weiterentwickelt.

Zu den Experten und Spezialistinnen für Business Intelligence (BI), die vor allem in den Finance & Controlling-Abteilungen, bei Software-Anbietern und Beratungshäusern zu finden waren und die von jeher das Thema Data Management besetzt hatten, sind mit dem unternehmensweiten Einzug von Digitalisierung, Big Data, Cloud-Services sowie der Demokratisierung von Daten neue Anforderungen und Bedarfe hinzugekommen.

Neue Aufgaben, Rollen und Berufsbilder haben sich herausgebildet und die Data Scientisten, Data Architekten und Data Engineers sind auf der Bildfläche erschienen.

Allen gemein ist zunächst das Interesse an und die Arbeit mit Daten – aber was genau ist ihr Ziel, was macht sie speziell, was macht sie glücklich und mit welchen Technologien und Methoden arbeiten sie? Wie funktionieren sie zusammen und wo unterscheiden sie sich? Nachfolgend haben wir eine kleine Einordnung für Sie zusammengestellt. Diese soll helfen, die verschiedenen Disziplinen der Modern Data Worker ein wenig besser zu verstehen:

1. BI & Data Manager

BI steht für Business Intelligence und das wiederum steht für Geschäftsanalytik. Kurzum: die systematische Analyse von verfügbaren, meist in strukturierter Form vorliegender Unternehmensdaten. Ziel dabei ist es, möglichst optimale Entscheidungen für das Unternehmen treffen zu können bzw. die Entscheidungsprozesse bestmöglich mit Erkenntnissen aus Daten zu unterstützen sowie Geschäftsabläufe, Kunden- und Lieferantenbeziehungen zu verbessern.

Ein BI & Data Manager legt die Grundlage dafür, in dem verschiedenste Datenquellen angebunden und die relevanten Daten in ein Data Warehouse bzw. einen Data Lake integriert werden. Dafür müssen Schnittstellen zu den unterschiedlichen Datenquellsystemen geschaffen, Daten miteinander verknüpft und formatiert sowie schrittweise veredelt werden.

Ein weiterer zentraler Aspekt ist die Umsetzung der übergreifenden Geschäftslogik, damit die Daten am Ende auch in einer einheitlichen und vergleichbaren Form vorliegen. Dies können unterschiedlichste Logiken sein wie z. B. die Historisierung von Daten, Datenqualitätsprüfungen oder eine einheitliche Währungsumrechnung. Ein Data Manager liefert mit dem Aufbau und der Bereitstellung von logischen Datenmodellen das zentrale Fundament für darauf aufbauende Reports, Dashboards oder weiterführende Analysen.

Im Bereich des Information Designs werden die bereitgestellten Daten mit einem geeigneten Frontend-Werkzeug wie beispielsweise Excel, Power BI, Pyramid Analytics oder vergleichbaren Tools visualisiert und je nach Zielgruppe entsprechend aufbereitet. Hier spielt die Art und Weise der Darstellung eine zentrale Rolle, Standards für die Visualisierung und fokussiertes Data Storytelling sind in dieser Disziplin entscheidende Erfolgsfaktoren.

Ein BI & Data Manager liebt Daten und deren Aufbereitung bis zur passenden Visualisierung. In diesen Bereichen fühlt er sich wohl und löst so manche Knobelaufgabe, wenn es darum geht, wie man bestmöglich die Daten für Endanwender, Power User oder Analysten vorbereiten und bereitstellen kann.

2. Data Scientists

Während die BI-Welt auf sauber aufbereiteten, tabellarisch strukturierten Daten fußt, geht es in der Data-Science-Disziplin etwas wilder zu. Hier werden analytische Applikationen entwickelt, indem entsprechende Technologien wie u. a. Machine Learning oder Data-Science-Plattformen eingesetzt werden. Zudem ist ein tiefes Prozessverständnis erforderlich, damit die Anforderungen der Fachanwender an die Analyseergebnisse auch interpretiert werden können.

Vor einem Data Scientist sind auch unaufbereitete, untabellarische, unstrukturierte Daten nicht sicher: Data Scientists werten nicht nur strukturierte Tabellen aus, sondern auch Fotos, Texte, Videos und Sprachnachrichten. Dafür ist es häufig erforderlich, diese heterogenen Datenbestände vor- bzw. aufzubereiten. Um eine grundlegende Struktur in die Daten zu bekommen, nutzen sie mathematische bzw. statistische Algorithmen, Verfahren zum Clustern der Daten und zum Erkennen von Anomalien.

Data Scientists adaptieren die neuesten Verfahren zur Datenauswertung, sie arbeiten in Python und R und bauen dabei vor allem auf die Open-Source-Welt; Docker, Kubernetes, Tensorflow und github sind aus ihrem Arbeitsalltag nicht wegzudenken. Data Scientists arbeiten sehr eng mit Data Engineers zusammen. Diese kümmern sich um die gesamte Dateninfrastruktur, damit die Data Scientists ihre komplizierten Berechnungen und Datenauswertungen realisieren können.

3. Data Architects

Bevor ein Data Engineer die Dateninfrastruktur jedoch erstellen kann, sollte ein Data Architect sie konzipieren. Das kann man sich so vorstellen wie beim Hausbau: Architekten planen hier zunächst, wie ein Haus gebaut oder umgebaut werden soll. Sie berücksichtigen dabei technische, wirtschaftliche, funktionale und gestalterische Aspekte und sind dafür zuständig, dass am Ende alles zusammenpasst und das Haus nicht einstürzt. Data Architects sind ihre Pendants in der IT-Landschaft.

Ein Data Architect ist für die Gesamtarchitektur einer Datenplattform verantwortlich – insbesondere dann, wenn komplexere Strukturen aufgebaut werden müssen. Dazu gehören die Definition und Anwendung von Architekturrichtlinien und Methoden sowie der Aufbau von Leitlinien für die Systemarchitektur und die damit verbundenen Einsatzbereiche von entsprechenden Technologien.

Diese komplexeren Strukturen fangen meist da an, wo die klassische BI-Welt aufhört – wo Big Data anfängt: dort, wo Daten in Echtzeit verarbeitet werden müssen, dort, wo unstrukturierte Daten verarbeitet werden und dort, wo hoch frequentierte Daten in kurzer Zeit verarbeitet werden. Beim Einsatz von Sensoren, die in Sekundenabständen Daten erzeugen, entstehen beispielsweise hochfrequentierte Daten. Müssen diese Daten noch in real-time – also sofort, in Echtzeit verarbeitet werden, dann erhöht sich die Komplexität zusätzlich.

Der Einsatz von Algorithmen oder anderer Analyseverfahren, wie etwa im Data-Science-Bereich, erfordert beispielsweise punktuell sehr hohe Rechenpower über einen begrenzten Zeitraum. Hier kommt dann auch die Infrastruktur mit ins Spiel, die den unterschiedlichen Anforderungen der verschiedenen Disziplinen gerecht werden muss. Die Vielfalt der technologischen Möglichkeiten, insbesondere im Cloud-Umfeld, stellen hohe Anforderungen an die Datenarchitektur. Ein Data Architect stellt sicher, dass die geforderten Anwendungsszenarien mit der angedachten Architektur und den dafür vorgesehenen Technologien umgesetzt werden können.

4. Data Engineers

Ein Data Engineer ist ein Spezialist für Datenmanagement insbesondere im Big-Data-Umfeld. Seine Arbeit umfasst die Konzeption und Implementierung von Datenintegrations- und Transformationsprozessen zur Unterstützung datengetriebener Use Cases und Data-Science-Projekte, damit eine bestmögliche Datenvorbereitung ermöglicht wird. In diesem Zusammenhang legen Data Engineers den Fokus auf die Entwicklung von analyseoptimierten Datenarchitekturen.

Data Engineers und Data Scientists arbeiten oft eng zusammen, wobei der Fokus des Data Engineers darauf liegt, Daten aus unterschiedlichsten Quellen und Formaten aufzubereiten, zu organisieren und die erforderlichen Datenpipelines aufzubauen sowie diese zu betreiben. Data Engineers arbeiten somit an der Schnittstelle zwischen Infrastruktur und Datenmanagement, überwachen Datenquellen und steuern Integrationsprozesse sowie die Instanzen, die für die Analyse und Weiterverwendung der generierten Daten zuständig sind.

In dem Sinne ist ein Data Engineer für alle Prozesse rund um das Generieren, Speichern, Pflegen, Aufbereiten, Anreichern und Weitergeben von Daten verantwortlich. Zudem ist für einen Data Engineer von hoher Bedeutung, dass die bereitgestellten Lösungen performant laufen und kontinuierlich optimiert werden. Über ein entsprechendes Monitoring hat ein Data Engineer alles im Blick.

Eng verknüpft mit Big Data, ist die Disziplin des Data Engineering noch vergleichsweise jung und stetig in der Weiterentwicklung. Data Engineers müssen sich daher stets am technischen Fortschritt orientieren, um der Entwicklung nicht hinterherzuhängen und sich in neue Frameworks, Konzepte und Technologien einarbeiten.

Mit Strategie, Roadmap, klaren Visualisierungskonzepten sowie der bewussten Verankerung in der Organisation ans Ziel

Damit datengetriebene Lösungen entstehen und nachhaltig funktionieren, sind weitere Rollen und Disziplinen gefordert und arbeiten mit den Modern Data Workern Hand in Hand. Gerne erzählen wir Ihnen auch dazu mehr. Sprechen Sie einfach Ihren QUNIS-Berater*in an oder schreiben Sie direkt eine E-Mail an team@qunis.de und verraten Sie uns ein wenig mehr zu Ihrer Motivation, Ihren Zielen und Vorhaben. Wir freuen uns auf den Austausch mit Ihnen.

Neues Start-up ergänzt das QUNIS-Firmennetzwerk

Erstellt am: Mittwoch, 24. November 2021 von Monika Düsterhöft

Sein Name ist TEQWERK – sein Programm ist Cloud Computing

TEQWERK, von Hermann Hebben und Steffen Vierkorn gemeinsam mit Christopher Heid gegründet, ergänzt das Netzwerk rund um QUNIS ab sofort mit einem auf Cloud Computing fokussierten Expertenhaus. Für Christopher Heid, der zuvor als Cloud Solution Architect bei QUNIS tätig war und dort vor allem das Cloud-Infrastruktur-Geschäftsfeld mit entwickelt und aufgebaut hat, erfüllt sich mit TEQWERK ein Traum und die Vision, Cloud Computing nicht als Nische, sondern als Gesamtauftrag zu leben.

 Ich bin davon überzeugt, dass die Cloud mehr kann, als sie momentan in vielen Unternehmen darf. Denn die Cloud ist das Fundament für die Digitalisierung von Unternehmensprozessen und Produkten. Bei richtigem Einsatz erhöht sie – entgegen weit verbreiteter Gerüchte – die Sicherheit und den Datenschutz und kann gleichzeitig zu signifikanten Kosteneinsparungen führen. 

Christoper Heid,
bekennender Cloud-Native-Verfechter
und Geschäftsführer von TEQWERK


Vom Mittelständler bis hin zum Konzern: TEQWERK begleitet Unternehmen auf ihrer Reise in eine moderne IT-Infrastruktur

Vom kurzfristigen Helfer bis zur langfristigen Cloud-Strategie, der Applikationsmigration und dem digitalen Arbeitsplatz, sprich Lösungen für eine digitale und vernetzte Zusammenarbeit innerhalb des Unternehmens: Das TEQWERK-Team unterstützt seine Kunden ganzheitlich bei allen Cloud-Initiativen unter anderem mit folgenden Services:

  • Cloud-Strategie-Entwicklung unter Einbezug aller relevanten, technischen und organisatorischen Aspekte.
  • Cloud-native-Lösungen für bestehende und neue Anwendungen.
  • Effektiver Schutz vor Cyber-Angriffen mit Zero Trust und künstlicher Intelligenz.
  • Digitale Arbeitsplätze aus der Cloud für ein modernes und vernetztes Arbeiten.
  • Training & Coaching für langfristige Projekterfolge und die Verankerung des Betriebsmodells in der Organisation.
  • Managed-Cloud-Lösungen für maximalen Komfort und bestmögliche Sicherheit zu kalkulierbaren Kosten.

 

Konkrete Unterstützung für ganzheitliche Cloud-Initiativen

Viele Unternehmen sind die letzten Jahre mehr oder weniger planlos in die Cloud gestartet. Dadurch sind oftmals Insellösungen mit verschiedensten Zugängen und ohne standardisierte Sicherheitsrichtlinien oder Transparenz über die Datenspeicherorte entstanden. Die Lösungen skalieren entgegen der Erwartung nicht und sind verwaltungstechnisch oftmals ein Chaos. Anstelle weniger ist die Verwaltung sogar oftmals aufwändiger geworden. TEQWERK fängt diese Inseln basierend auf seinem Cloud Adoption Framework ein und etabliert ein Cloud-Betriebsmodell. So kann die Cloud ihre Stärken entwickeln und wirklich Spaß machen.

Oftmals können IT-Organisationen auch einfach mit ihrer On-Premise-Welt nicht mit der Geschwindigkeit mithalten, die die Fachbereiche fordern. In der Folge wird die Enterprise-IT per Kreditkarte umgangen und der Fachbereich bezieht seine Cloud-Dienste selbst. TEQWERK setzt hier ein den Bedürfnissen entsprechendes Cloud-Fundament auf und coacht IT-Organisation Schritt für Schritt in die Cloud.

Zudem wird in den Unternehmen nicht selten schwarz-weiß gedacht: Entweder die Cloud ist toll oder schrecklich, dazwischen gibt es häufig nicht viel. TEQWERK entwickelt mit seinen Kunden eine Cloud-Strategie, die den individuellen Anforderungen Rechnung trägt, damit sich für vertrauenswürdige Anbieter die Tür öffnet und unsichere Cloud-Angebote ausgeschlossen werden können.

Unternehmen, die sich der Cloud in Gänze verschließen, schneiden sich damit auch den Zugang zu Innovationen ab. Mit dem Cloud Discovery Workshop zeigt TEQWERK auf, welches Potenzial in der Cloud schlummert und wie ein Wandel von No-Cloud zu Cloud-ready gelingen kann.

Welcher Hyperscaler, ob Amazon, Google oder Microsoft, schlussendlich zum Einsatz kommt, ist für den Projekterfolg nicht entscheidend

Für eine erfolgreiche Cloud-Initiative stehen bei TEQWERK die sonst leider noch viel zu oft außen vor gelassenen Fragestellungen zu Nutzen, Aufwand und Zielen an erster Stelle. Hat man hier ein klares Bild entwickelt, wird die zweite Stufe gezündet und die operative Cloud-Journey mit TEQWERK gestartet. Basis dafür bilden Blueprints, erprobte Cloud-Architekturen sowie Best-Practises im Umgang mit der Cloud. Das Ziel ist die Schaffung einer werthaltigen Lösung, damit IT-Organisationen das Cloud-Potenzial erkennen und nachhaltig für ihr Unternehmen heben.

Lust auf mehr Cloud?

Mehr zu TEQWERK, den  Angeboten und Kompetenzen finden Sie auf der TEQWERK HOMEPAGE

Moderne Data & Analytics-Vorhaben fordern Cloud-Basis-Know-how beim Kunden

Erstellt am: Donnerstag, 13. Mai 2021 von Monika Düsterhöft

Die Cloud bietet umfassende Vorteile für BI und Advanced Analytics

Die Cloud gewinnt immer mehr an Bedeutung. Nicht nur als Möglichkeit für den generellen Aufbau von IT-Architekturen und Business-Modellen, sondern auch ganz konkret bei der Umsetzung von BI- und Advanced-Analytics-Projekten. Denn die Cloud bietet viele unschlagbare Vorteile. Diese liegen zum einen im Bereich der Kostenersparnis und Kostenkontrolle: Bezahlt wird nur, was tatsächlich an Leistung verbraucht wird, die Abrechnung erfolgt nach dem “Pay as you go”-Prinzip, es fallen keine Vorabkosten an und Investitionsausgaben für längerfristige Anlagegüter (CapEx) werden reduziert.

Zum anderen – und dies ist auch besonders für die Abbildung von Advanced-Analytics-Szenarien interessant – erlauben Cloud-Architekturen eine bedarfsgerechte Skalierung und damit die schnelle Bereitstellung passgenauer Infrastrukturen. Dank tiefer Integration in DevOps-Prozesse lassen sich zudem Entwicklungszyklen verkürzen, darüber hinaus können robuste Architekturen mit zum Beispiel Redundanzen in mehreren Regionen und Rechenzentren auf einfache Art und Weise sowie mit äußerst überschaubarem Administrationsaufwand realisiert werden. Zunehmend mehr Unternehmen erkennen diese Vorteile und sehen, was mit Cloud-Architekturen gerade auch für BI- und Analytics-Vorhaben möglich ist.

Die Stimmung ist positiv, birgt jedoch auch Herausforderungen 

Wir bei QUNIS erleben es täglich in unseren Projekten. So gut wie all unsere Kunden haben sich bereits mit dem Thema Cloud beschäftigt – und sei es nur gedanklich. Sie sind offener denn je für den Einsatz der neuen Technologien und Use Cases, bei denen Big Data oder Streaming Data in die Analysen miteinbezogen werden, sind in der Zwischenzeit zur Realität geworden. Hinzu kommt, dass BI- und Analytics-Projekte oftmals aufgrund ihrer Spezifika als „Leuchtturm“-Initiativen gelten. Und nicht selten handelt es sich dabei auch um das erste Projekt im Unternehmen, das ganz bewusst in der Cloud umgesetzt werden soll.

Eine Herausforderung, die sich daraus ergibt und die wir aktuell beobachten: Fragen zum Cloud-Konzept und damit zu Aspekten wie Networking, Monitoring, Deployment, Governance und Compliance, aber auch zur Technologie selbst, werden in BI- und Analytics-Projekten oft zum allerersten Mal gestellt und müssen erst grundlegend geklärt werden. Ein großer Teil der Projektaufwände entfällt also auf Themen, die nicht Kern des eigentlichen Projektes sind. Und Aspekte wie Cloud-Einarbeitung, -Know-how-Transfer und -Konzept-Erstellung wirken sich bemerkbar auf Timeline, Budget und Qualität des eigentlichen Projektes aus, da sich  „Nebenkriegsschauplätze“ ausbilden, die nicht originär mit den fachlichen Anforderungen in Zusammenhang stehen.

Wir versorgen Projekt-Teams mit notwendigem Cloud-Know-how

Die Erkenntnis, dass das notwendige Cloud-Basis-Know-how in Unternehmen oft nicht ausreichend vorhanden ist, aber für die zielgerichtete Umsetzung von BI- und Analytics-Projekten immer essenzieller und dringender notwendig wird, hat uns dazu bewogen, ein entsprechend fokussiertes Schulungsprogramm zu entwickeln:

Mit der dreitägigen und aus sechs Modulen bestehenden Schulung „Modern Data Management & Analytics on Microsoft Azure“ wollen wir Unternehmen, die eine Lösung in der Cloud planen, dabei unterstützen, sich das geforderte Cloud-Know-how bereits vor Projektbeginn anzueignen. Zugleich regen wir im Rahmen der Schulung dazu an, sich Gedanken über den Cloud-Reifegrad des eigenen Unternehmens zu machen. So möchten wir unsere Teilnehmer dazu befähigen, die notwendigen Themen zu identifizieren und intern zu adressieren.

Denn eine moderne, ganzheitliche BI-Lösung in der Cloud besteht aus deutlich mehr Komponenten als ein klassisches Data Warehouse (DWH) On-Premise. Die Auswahl der richtigen Komponenten und der Aufbau einer ganzheitlichen Architektur stellen dabei eine besondere Herausforderung dar. In unserer Schulung stellen wir dafür Azure-Komponenten aus verschiedenen Bereichen vor, vergleichen ähnliche Angebote miteinander und ordnen die einzelnen Komponenten den diversen Bereichen einer BI-Lösung zu.

Facettenreiche Schulungsinhalte geben fundierten Überblick zu Azure

Im Rahmen der Schulung gehen wir auf Komponenten für eine relationale DWH-Architektur in der Cloud genauso ein wie auf die Komponenten für Big-Data- und Streaming-Use-Cases und zeigen auf, wie sie in eine klassische DWH-Architektur integriert werden können, um diese sinnvoll zu ergänzen.

Wir befassen uns einerseits mit Möglichkeiten des „Lift & Shift“, bei denen bestehende Applikationen und Pipelines direkt in die Cloud übertragen werden können. Andererseits diskutieren wir auch Cloud-optimierte, also „Cloud-Optimized“-Konzepte, die verstärkt Cloud-native Funktionen wie “Serverless Computing“ und „Platform as a Service“ verwenden. Teilnehmer erhalten eine Übersicht der skalierbaren Cloud-Komponenten zur Umsetzung des Modern DWH in Azure. Die Schwerpunkte liegen auf

  • Extraktion und Datenflusssteuerung (Azure Data Factory, Event Hub – Kafka der Cloud)
  • Transformation und Compute (Azure Databricks – Apache Spark, Azure Functions – Serverless Computing, “Code First”, Azure Logic Apps – Serveless Computing, “Design First”, Azure SSIS integration runtime)
  • Speicherung und Storage (Blob und File-Storage, Azure Data Lake Storage Gen2, Azure Synapse Analytics)
  • Analyse und Bereitstellung der Daten (Polybase – „Logical Data Warehouse“) und Azure Analysis Services (Power BI).

Reine Data-Science-Anforderungen und -Projekte lassen sich zudem in jeder Größenordnung sehr gut und auch vollständig in der Cloud abbilden. Gerade die einfache und bedarfsgenaue Skalierbarkeit von Rechnerressourcen ist dabei ein immenser Vorteil gegenüber einer On-Premise-Lösung. In unserer Schulung stellen wir die verschiedenen Möglichkeiten zur Durchführung von Advanced-Analytics-Use-Cases vor.

  • So erlaubt die umfassende grafische Analytics-Umgebung „Azure Machine Learning Studio“, komplexeste Algorithmen vollständig ohne eigene Programmierung zur Anwendung zu bringen. Die gute Integration der mächtigen und skalierbaren Databricks-Umgebung ermöglicht es, analytische Modelle auf Big Data mit Apache Spark anzuwenden. Deshalb wird das System oft als Schweizer Taschenmesser der Big-Data-Datenverarbeitung bezeichnet.
  • Bei Apache Spark handelt es sich um ein einheitliches In-Memory-Big-Data-System, das bestens für die performante und parallele Verarbeitung von enormen Datenmengen geeignet ist. Apache Spark verarbeitet die Daten im Arbeitsspeicher und versucht das Schreiben auf eine Festplatte zu vermeiden. Databricks basiert auf den in Apache Spark verfügbaren Funktionen und übernimmt die komplette Verwaltung des Spark-Clusters.
  • Daneben lernen Sie die „Cognitive Services“ kennen mit fertig trainierten Anwendungen von Bild- über Sprach- oder Formularerkennung, die als Komponente in Ihre Use-Cases integriert werden können. Und wir stellen Ihnen die vorkonfigurierte „Data Science Virtual Machine“ bereit als Allzweckwerkzeug für eine kurzfristig verfügbare Entwicklungsumgebung.

Auch für die Operationalisierung von Use-Cases bietet Ihnen die Cloud vielfältige Möglichkeiten, um mit bereits geringem Konfigurationsaufwand zum produktiven Setup zu gelangen ¬– egal, ob Sie trainierte Modelle als Pipeline im Azure Machine Learning Studio anwenden und per API bereitstellen oder eigene containerbasierte Anwendungen im Kubernetes Cluster orchestrieren.

Kompaktes Wissen und Use Cases aus der Praxis

Mit dem QUNIS-Schulungsangebot „Modern Data Management & Analytics on Microsoft Azure“ ist es unser Ziel, unsere Teilnehmer bestmöglich auf die ersten Schritte mit der Cloud-Technologie Microsoft Azure im eigenen Unternehmen vorzubereiten. Wir veranschaulichen alle Themen durch Use Cases aus der Praxis und vermitteln in Live-Demos einen tieferen Einblick in die verschiedenen Technologien.

Nach der Schulung sind Sie ausgestattet mit einer breiten Wissensgrundlage und fähig, fundierte Cloud-Entscheidungen für Ihr Projekt treffen.

Mein Tipp: Hier finden Sie eine detaillierte Beschreibung der Schulung und aktuelle Termine. Sollten Sie eine individuelle Schulung für Ihr Unternehmen wünschen, sprechen Sie uns einfach an, wir beraten Sie gerne und unterbreiten Ihnen ein entsprechend auf Ihre Bedarfe zugeschnittenes Angebot. KONTAKT

Fachkonzeption… muss das sein?

Erstellt am: Mittwoch, 7. April 2021 von Monika Düsterhöft

Die Vielfalt an technischen Möglichkeiten sowie das Streben nach pragmatisch schnellen Ergebnissen verleiten gerne dazu, die Fachkonzeption zu vergessen. Sollten Sie aber nicht!

Bei der Umsetzung von Data & Analytics-Projekten befinden sich Organisationen häufig im Spannungsfeld zwischen einerseits einer hohen Erwartungshaltung der potenziellen Anwender, geweckt durch die Vielzahl an technischen Möglichkeiten und der Leistungsfähigkeit am Markt erhältlicher Produkte, und andererseits dem eigenen Bestreben, Projekte schnell zum Erfolg zu führen.

Die erfolgsentscheidende fachliche Konzeption und Definition der umzusetzenden Anforderungen kommt dabei oftmals zu kurz und Lösungen werden zu pragmatisch realisiert. Damit die wichtige Phase der fachlichen Konzeption nicht unter den Tisch und ihr Fehlen Ihnen nachträglich vor die Füße fällt, habe ich für Sie, basierend auf unserer Projekterfahrung, eine Liste mit hilfreichen Hinweisen zusammengestellt.

Die folgenden acht Punkte geben Ihnen eine Orientierung, wie Sie beim Erstellen einer Fachkonzeption vorgehen und auf was Sie achten sollten.

1. Anwendungsfälle nutzenorientiert definieren

Anwendungsfälle benötigen eine strukturierte Beschreibung und klare Zielsetzung. Neben einer fachlichen Beschreibung der fachlichen Anforderungen, den Voraussetzungen für die Umsetzung sowie die benötigten Daten und deren Herkunft, müssen vor allem die Ziele inklusive der damit verbundenen Nutzenfaktoren beschrieben sein und diesen die erwarteten Aufwände gegenübergestellt werden.

Somit wird die Priorisierung von Use Cases erheblich unterstützt bzw. erleichtert sowie die Basis geschaffen für eine spätere Analyse der Nachhaltigkeit bzw. des tatsächlich erreichten Business Nutzens.

2. Umfang von Anwendungsfällen für Data & Analytics festlegen

Eine Zielrichtung für Data & Analytics-Initiativen ist essenziell, um wichtige Basisparameter und Fragestellung für das Projekt zu definieren. Von daher sollten die geplanten Einsatzbereiche und angestrebten Lösungen abgesteckt, grob priorisiert und auf einer Roadmap festgehalten werden.

3. Zentrale Themen ganzheitlich betrachten

Beim Aufbau einer Data & Analytics-Landschaft und der Umsetzung der verschiedenen Szenarien gibt es übergreifende Themengebiete mit zentraler Bedeutung, die einheitlich und zu Beginn des ersten Anwendungsfalles für alle weiteren mit definiert werden sollten.

Dazu zählen unter anderem:

  • Infrastrukturfragestellungen
  • Security- und Zugriffskonzepte
  • Anforderungen an die Datenharmonisierung
  • Datenqualität und -hoheit in Abstimmung mit den Quellsystemen

4. Mit kleinen Schritten starten

Erste Anwendungsfälle sollten keinesfalls zu groß dimensioniert werden. Gerade für den Einstieg in Data & Analytics-Projekte ist es wichtig, Pilotprojekte überschaubar zu definieren, damit Ergebnisse und damit verbundene Erfolge sichtbar bzw. Nutzenvorteile in der Organisation spürbar werden. Nicht zu unterschätzen ist neben den ersten spürbaren Ergebnissen auch eine Lernkurve, die das gesamte involvierte Team durchschreitet.

5. Fachliche Feinkonzeption bildet das stabile Fundament

Sobald die Roadmap für Anwendungsfälle festgelegt ist, müssen die zuerst priorisierten fachlich im Detail spezifiziert werden. Hier sollte immer von den Anforderungen der Anwender ausgegangen werden. Dies kann z.B. bei einem Reporting Use Case die Visualisierung der Daten, Definition von Kennzahlen und deren Berechnung, benötigte Dimensionen sowie das zugrunde legende fachliche Datenmodell sein.

Diese fachlichen Anforderungen gilt es dann in ein technisches Konzept für die Realisierung zu transformieren und die erforderlichen Rahmenparameter für die Implementierung festzulegen, der ein zentrales technisches Datenmodell mit einer Anbindung der notwendigen Quellsysteme zugrunde liegt.

6. Aufwände realistisch und verlässlich abschätzen

Auf Basis der Feinkonzeption kann eine valide und möglichst realitätsnahe Schätzung der Aufwände für die Implementierung erfolgen. Somit kann abschließend bewertet werden, wie viel Aufwand erforderlich ist, um den gegenüberstehenden Business-Nutzen zu erzielen.

7. Management Freigabe einholen

Für die umzusetzenden Use Cases sollte neben der Roadmap auch eine Freigabe der Budgets für die geplanten Anwendungsfällen durch das verantwortliche Management erfolgen.

8. Data & Analytics-Projekte effizient steuern

Um eine möglichst effiziente und zielgerichtete Projektsteuerung zu erreichen, sollten für die verschiedenen Projektphasen die am besten geeigneten Methoden angewendet werden.

  • Die Erfahrung zeigt, dass Best Practices für Analytics-Projekte eine Verzahnung von klassischen und agilen Methoden erfordern.
  • Übergreifende Themen wie beispielsweise die Definition einer Strategie und Roadmap, Konzeption und Priorisierung der Umsetzungsplanung werden eher klassisch gesteuert.
  • Die technische Umsetzung erfordert agile Methoden. Spezifizierte Anwendungsfälle werden gemäß der Umsetzungsplanung in die agile Projektsteuerung übergeben und dann iterativ umgesetzt.

Zusammenfassend kann man festhalten, dass neben einer strategischen Planung und Ausrichtung einer Data & Analytics-Initiative die Aufteilung des Gesamtvorhabens in einzelne Anwendungsfälle und deren Konzeption erfolgsentscheidend ist, ohne das große Ganze aus dem Blick zu verlieren und einen stetigen Projektfortschritt und damit verbundene Erfolge zu erreichen.

Mein Tipp: Gerne informiere ich Sie, wie wir diese acht Schritte gemeinsam mit Ihnen gehen. Sprechen Sie mich einfach an. Sie finden mich auf LinkedIn oder schreiben Sie mir hier, ich melde mich gerne bei Ihnen. KONTAKT

Will man mit der Digitalisierung erfolgreich sein, braucht es dringend ein Datenmanagement-Konzept!

Erstellt am: Donnerstag, 21. Januar 2021 von Monika Düsterhöft

An Datenmanagement denken heißt Digitalisierung lenken

Geschäftsmodelle werden vermehrt datengetrieben. Dies bedeutet nicht zuletzt, dass Daten zu einer bedeutenden Ressource in Unternehmen werden. Um mit Daten aber nun effizient und strukturiert umzugehen benötigt es dringend ein Datenmanagement.

Die Teilnehmer von the factlights 2020, der größte Online-Erhebung zur Realität von Digitalisierung und Datenarbeit im deutschsprachigen Raum bestätigen dies. Sie sehen in mangelnder Datenqualität und fehlendem harmonisierten Datenbestand eine der größten Hauptherausforderung, um den neuen Anforderungen gerecht zu werden (vgl. Studien-PDF S. 25). Zudem bestätigen sie, ein einheitlicher Datenbestand entscheidungsrelevanter Daten ist essenziell, sei eine der fünf wichtigsten Erkenntnisse der Digitalisierung für sie (vgl. Studien-PDF S. 31).

Hier also vier Aspekte, die Sie im  Zuge der Digitalisierung und speziell im Hinblick auf das Thema Datenmanagement, im Auge behalten sollten:

 1. Daten sind ein wertvolles Asset

Heutige Anforderungen verlangen vermehrt eine Cross-funktionale Denke und das Bewusstsein, speziell mit Daten ein wertvolles Gut für interne und externe Zwecke zu besitzen. Trotz dieses Trends sehen zahlreiche Unternehmen Daten immer noch nicht als ein zentral zu organisierendes Asset an. Sie agieren vielmehr eher projektgetrieben und teilweise auch sehr unorganisiert.

Zudem betrachten sie den Einsatz von Daten oftmals weniger unter dem Aspekt des Nutzenpotenzials und dessen Zuordnung, noch denken sie konkret an eine nachhaltige Verankerung der Datenerzeugung und Datennutzung in der Organisation. Folgende zwei essentielle Fragen sollten in diesem Zusammenhang also immer und standardmäßig erörtert werden:

  • Worauf genau zahlt die Nutzung der Daten ein? Geht es Organisationen primär darum Kosten zu sparen, will man die Qualität bestehender Produkte verbessern, will man Risiken minimieren, Umsatz steigern oder gar Effizienz erhöhen.
  • Wie ist der Aufbau einer funktionierende Data Governance zu realisieren, die entsprechende Ziele, im Rahmen der Datennutzung unterstützt und Risiken minimiert? Konkret geht es hier um Klärung und Zuordnung von Verantwortlichkeiten samt entsprechender Rollen, Vorschriften und Zyklen.

2. Daten(quellen) werden immer heterogen bleiben

Die Herausforderungen für Data & Analytics-Vorhaben sind häufig die heterogenen und nicht harmonisierten Datentöpfe und Systeme. Vielerorts trifft man diesbezüglich auf das Phänomen des „Hoffens auf ein Wunder“, dass alles wie von Zauberhand und vielleicht sogar durch die Einführung des nächsten Systems sauber werden möge.

Ein solches Wunder ist jedoch nicht zu erwarten, da die Datenbestände heterogen bleiben. Hinzu kommen die um sich greifenden Cloud-Lösungen, die die Heterogenität noch forcieren. Gerade weil der Idealzustand aber nie erreicht werden kann, sind schlüssige Konzepte für die Bewertung der notwendigen Datenqualität dringend gefragt.

3. Priorisierung der Datenharmonisierung

Unternehmen sind häufig bestrebt, prozessübergreifend valide und gesicherte Datenbestände aufzubauen. Harmonisieren und Integrieren lautet zumeist die dafür ausgegebene Zielsetzung. Und genau hier fängt oftmals ein nie enden wollendes Projekt an. Denn was gern verkannt wird ist, dass sich die datenorientierten Anforderungen in der Regel nicht auf eine Abteilung oder einen Unternehmensbereich begrenzen lassen – Data does not follow the process.

Die Datenentstehung und deren Nutzung entsprechen sehr häufig nicht der klassischen Linienorganisation. Daten entstehen nicht nur an einer Stelle oder entlang eines Prozesses, denn sie werden Abteilungs- und Bereichs-spezifisch angereichert und ergänzt. Schlussendlich sollen sie aber dennoch an unterschiedlichsten Stellen und in verschiedensten Sichten und Prozessübergängen bereitgestellt und ausgewertet werden können.

4. Analytics-Kompetenz ist unterbesetzt

Die zunehmende Bedeutung von Daten erfordert immer mehr Know-how in der Datenarbeit. Erfahrungsgemäß ist diese Analytics-Kompetenz aber in vielen Unternehmen unterbesetzt. Man kann sogar sagen, viele Organisationen verfügen über absolut unzureichende Ressourcen und Skills. Und auch der Arbeitsmarkt gibt nicht genügend Experten her, so dass man mit Personalaufbau dem entgegenwirken könnte. Angesichts dieses personellen Nadelöhrs liegt eine Lösung darin, die vorhandenen Ressourcen und Skills bestmöglich zu unterstützen.

Der Aufbau eines sehr gut strukturierten Datenmanagements mit entsprechenden Architekturen kann dabei helfen. Denn es ermöglicht Anwendern, sich mit Analytics auseinanderzusetzen, ohne mit der Komplexität des darunterliegenden Datenmanagements konfrontiert zu werden. Gerade auch dem Metadatenmanagement kommt hier ein hoher Stellenwert zu.

Unser Tipp: Diese und weitere Empfehlungen sowie Daten, Fakten, Branchenspecials und alle Ergebnisse der größten Online Erhebung zur Realität von Digitalisierung und Datenmanagement im deutschsprachigen Raum finden Sie in den Studienergebnissen von the factlights 2020.

Holen Sie sich hier direkt Ihr kostenfreies, persönliches Exemplar THE FACTLIGHTS 2020

Data Governance: Schon mal drüber nachgedacht?

Erstellt am: Freitag, 5. Juni 2020 von Monika Düsterhöft

So wichtig für erfolgreiche Data & Analytics Projekte

Daten gelten als Herzstück jedes Unternehmens. Und so gut wie bei jedem steht, nicht zuletzt getrieben durch die aktuellen Entwicklungen, das Thema Digitalisierung ganz weit oben auf der Agenda. Das Regeln von Verfügbarkeit, Integrität und Sicherheit der verwendeten Daten, die sogenannten Data Governance, wird in diesem Zuge jedoch oftmals eher stiefmütterlich behandelt.

Dass dem so ist, mag zum einen daran liegen, dass es sich um ein vergleichsweises neues Thema handelt. Zum anderen ist Data Governancen sehr rechtslastig, wird mit Disziplin, Verwaltung und Aufwand konnotiert und gilt gemeinhin als „trocken und unattraktiv“. Und wie wir alle wissen: Um solche Themen kümmert man sich nicht wirklich gern.

Ein fehlerhafter Umgang mit Daten jedoch kann schnell zu erheblichen Wirtschafts- und Imageschäden führen. Rechtliche Konsequenzen, Bußgelder, Strafen und empfindliche Schadensersatzansprüchen drohen.

Wegducken gilt nicht – Data Governance geht jeden an!

Auf der Hand liegt, wo immer es zu Problemen mit Daten kommt, weißt sich die Gesamtverantwortung direkt der Geschäftsführung und dem Vorstand zu; unter Umständen greift deren Haftungsrisiko sogar bis aufs Privatvermögen durch. Schon allein deswegen sollten das Vorhandensein und konsequente Leben einer Data Governance ein ganz persönliches Anliegen des Top-Managements sein.

Im Gegensatz zur Top-Führungsriege steht der Mitarbeiter, der als ausführendes Organ nach bestem Wissen und Gewissen handelt, bei einer Datenpanne nicht in legaler Verantwortung. Nichtsdestotrotz ist auch sein Handeln oder Nichthandeln von unliebsamen persönlichen Konsequenzen bedroht. Denn selbst eine Panne, die auf Motivation und Engagement basiert kann zu Arbeitsplatzverlust oder zumindest internen Problemen führen. Um diesem Konflikt aus dem Weg zu gehen, kann es sein, dass Mitarbeiter lieber nichts tun bevor sie etwas tun, von dem sie nicht recht wissen, ob sie es dürfen oder nicht. Ineffizienz bis hin zum vollständigen Stillstand von Initiativen sind die Folge für das Unternehmen.

Unbenommen wäre es also förderlich zu wissen, was man am Arbeitsplatz mit welchen Daten tun darf und was nicht. Und zwar sowohl für den normalen Mitarbeiter, als auch für die Führungskräfte. Letzteren fällt in diesem Zusammenhang wohl der undankbarste Part zu: Sie stehen im Kreuzfeuer von Management und Mitarbeitern, müssen delegierte Aufgabenstellungen weitertragen und auf deren Umsetzung bedacht sein.

Kein Data & Analytics Projekt ohne Governance

Betrachtet man Chancen, Möglichkeiten, Risiken und in Zeiten des War of Talents und Fachkräftemangels auch die hohe Notwendigkeit im Hinblick auf Mitarbeiter-Sicherung und Motivation, so sollte keine Data & Analytics Initiative auf- bzw. umgesetzt werden ohne nicht parallel eine entsprechenden Data-Governance-Initiative zu betreiben.

Die gute Nachricht: Das Ganze hört sich schlimmer an als es ist. Vielmehr, eine Data & Analytics Governance ist in überschaubaren und leicht verdaubaren Schritten machbar. Einzige Voraussetzung, die Etappenziele müssen sauber definiert und ein dazu passender Methoden- und Maßnahmenkatalog erstellt worden sein. Auf diesem soliden Fundament lässt sich eine passende Data & Analytics Governance in die Organisation und Prozesse integrieren und die letztlich nachhaltige Umsetzung wird möglich.

QUNIS-Vorgehenskonzept bringt Durchblick, Struktur und Effizienz

Basierend auf Praxis-Erfahrung und Know-how hat QUNIS ein dreistufiges Framework mit insgesamt acht Handlungsfeldern entwickelt, das für Business-Intelligence- und Andvanced-Analytics-Initiativen eine verlässliche Orientierungshilfe für den Aufbau und die Etablierung einer Data Governance stellt.

Auf der ersten Stufe geht es darum, die Zielsetzung festzulegen: Welche Daten gibt es und in welchem Bezug stehen diese zu den rechtlichen Vorgaben bzw. welche Maßnahmen sind konkret daraus abzuleiten? Hier geht es um so wichtige Dinge wie ein gut funktionierendes Risikomanagement und den Blick auf sensible Datenschnittstellen zu Externen. Zudem werden aber auch ganz generell Fragen etwa zur Gewährleistung der Datenqualität behandelt.

Im darauf aufbauenden Bereich von Methoden und Maßnahmen werden rechtliche Vorgaben geklärt: Welche Daten und Prozesse korrespondieren mit welchen rechtlichen Normen wie GDPdU oder DSGVO? Im Fokus stehen Datenzugriffs- und Datenberechtigungskonzepte oder Back-Up-Strategien zur durchgängigen Gewährleistung der Datenverfügbarkeit. Im Sinne des Projektmanagements werden zudem die Vorgehensweisen erarbeitet, also beispielsweise Dokumentationsrichtlinien festgelegt, Guidelines für die Mitarbeiter erarbeitet, Recovery-Pläne und Definition von Messpunkten.

Zu guter Letzt geht es darum, das Erarbeitete in die Organisation und die laufenden Prozesse zu integrieren. Um klare Verantwortlichkeiten definieren zu können, wird das bewährte QUNIS-Rollenmodell herangezogen als Basis für den individuellen Zuschnitt auf konkrete Rahmenbedingungen und Bedürfnisse des jeweiligen Unternehmens. Darauf aufbauend lassen sich schließlich trennscharfe Strukturen herausarbeiten, die jedem betroffenen Teilbereich Verantwortlichkeiten und Zuständigkeiten zuordnen

Denken Sie die Data Governance immer gleich mit!

Es gibt viele gute Gründe dafür, seine Daten im Unternehmen zu schützen bzw. zu sichern und dabei rechtskonform und werteorientiert zu handeln. QUNIS unterstützt Sie dabei, eine ganz individuelle Governance für die Data & Analytics Initiativen in Ihrem Unternehmen umzusetzen und erfolgreich zu steuern. Alles was Sie tun müssen ist uns kontaktieren. Beim Rest begleiten wir Sie kompetent.

Mein Tipp: Besuchen Sie unser kostenfreies QUNIS-Webinar „Data Governance – so machen Sie Ihre BI-, Big-Data- und Advanced-Analytics-Lösung rechtlich und organisatorisch sicher.“ TERMINE UND ANMELDUNG

the factlights 2020: Die zentrale Erhebung zum Stand von Data & Analytics

Erstellt am: Mittwoch, 18. März 2020 von Monika Düsterhöft

Die Digitalisierung verändert unsere Arbeitswelt in einer rasanten Geschwindigkeit. Und auch die aktuelle Krise zeigt, was Digitalisierung und Datenarbeit zu leisten vermögen. Doch wo stehen wir aktuell? Welche Prozesse und Geschäftsmodelle wandeln sich im Unternehmen? Was bedeutet dies für unseren Arbeitsalltag? Digitalisierung ohne Wenn und Aber? Diese und weitere Fragen möchten wir im Rahmen einer Studie klären und die daraus resultierenden Erkenntnisse und Empfehlungen mit Ihnen teilen.

Machen Sie mit bei the factlights 2020 – die zentrale Erhebung zum Stand von Data & Analytics im deutschsprachigen Raum. 


Alle Teilnehmer der ONLINE-UMFRAGE erhalten ein exklusives Management Summary und die Möglichkeit auf attraktive Gewinne, wie einen E-Scooter, Taschen von ‚The North Face‘ oder einen 10 Euro Amazon-Gutschein als Sofort-Dankeschön.

Die Studie hinterfragt: Welche Prozesse und Geschäftsmodelle wurden umgestaltet? Was ist noch pure Vision, was in der Planung und was bereits gelebte Praxis? Was passiert bewusst und was eher unterbewusst? Welche Umstände halten Unternehmen und Mitarbeiter davon ab, die Möglichkeiten moderner Datenarbeit auszuschöpfen? Wo liegen Ängste, Sorgen und Nöte? Wie wird diesen begegnet? Was wird vorausgesetzt und was erwartet? Und wie soll es idealerweise weitergehen?

the factlights 2020 ist eine Initiative der QUNIS

Gemeinsam mit den Partnern CA Controller Akademie, HEUSSEN, Liebich & Partner, QUNIS und WTS ITAX wird im Zeitraum von März bis Mitte Juni 2020 die großangelegte Online-Umfrage the factlights 2020 – About Datat & Analytics Reality durchgeführt. Es geht um eine Bestandsaufnahme dazu, ob und wo Digitalisierung & Co. im Arbeitsalltag der Fachbereiche angekommen sind. In mittelständischen und Großunternehmen. Befragt werden sowohl Leitungsebene als auch Mitarbeiter aus allen Branchen und Bereichen. Angefangen von Finance, Accounting, Controlling, Sales und Marketing bis hin zu IT, Logistik und HR.

Trend-Artikel, Fachbeiträge, Tipps, Studien, Downloads und mehr

Auf the factlights informieren führende Unternehmen verschiedenster Disziplinen und Branchen zu aktuellen Herausforderungen, Stand von Forschung, Lehre, Markt und Technologie. Ganzjährig und aus den verschiedensten Blickwinkeln des Marktes. Hier geht‘s zu WWW.THE-FACTLIGHTS.DE

PUREN Pharma: Effiziente Prozesse und Datenanalysen im Web-Portal mit QUNIS

Erstellt am: Donnerstag, 12. März 2020 von Monika Düsterhöft

Das erfolgreiche Pharmaunternehmen PUREN Pharma hat mit Hilfe der QUNIS digitale End-to-End Geschäftsprozesse umgesetzt, zu denen auch fortgeschrittene Analysen mit zahlreichen internen und externen Datenarten gehören. Das spart viel Zeit und sichert die hohe Qualität von Prozessen und Informationen.

Wir haben mit QUNIS unsere komplexen Geschäftsprozesse unternehmensweit standardisiert und automatisiert. Basis ist ein zentrales Informations- und Analyse-Portal, in das wir jederzeit weitere Nutzer und Datenquellen oder neue On-Premise- und Cloud-Technologien einbinden können.

Christoph Gmeiner,
Teamlead Data Science & Business Intelligence,
PUREN Pharma GmbH & Co. KG

Die Anforderung: Umfangreiche Rechnungsbearbeitung

Generika von PUREN tragen entscheidend dazu bei, dass hochwertige Arzneimittel für jeden bezahlbar bleiben. In diesem Rahmen hat PUREN zudem zahlreiche Rabattverträge mit Krankenkassen abgeschlossen. Die Verwaltung der Verträge und der einzelnen Abschlagszahlungen an die Krankenkassen wurde für das erfolgreiche Pharmaunternehmen jedoch immer komplizierter.

Problematisch war vor allem, dass in einzeln geführten Excel-Listen der direkte Bezug zwischen den in den Apotheken getätigten Umsätzen und den monatlich, quartalsweise oder jährlich verrechneten Abschlagszahlungen an die Krankenkassen fehlte. Bei bundesweiten Verträgen mit rund 150 Krankenkassen, in denen u.a. unterschiedliche Abrechnungs-Zyklen, Rabatte und Dateiformate der Kassen zu berücksichtigen waren, entstand erheblicher manueller Aufwand für die Erfassung und Bearbeitung der Daten in einer Vielzahl von Excel-Dateien.

Das zuständige Team Data Science & Business Intelligence wollte den Prozess daher automatisieren und suchte nach einer Lösung, die einen einfach steuerbaren Freigabeworkflow für die Rechnungsbearbeitung mit einer zentralen Datenhaltung und Rechnungsprüfung im Backend verbindet. Die Systemlösung sollte flexibel und nach Bedarf skalierbar sein, um die wachsenden Anforderungen des Pharmaunternehmens dauerhaft abdecken zu können.

Die Lösung: Einfach steuerbare Prozess und Analyseplattform

Mit der Unterstützung von QUNIS hat PUREN seine ideale Lösung für anspruchsvolle Geschäftsprozesse gefunden und implementiert. Das Projektteam hat im ersten Schritt eine prozessorientierte BI-Plattform für die Bearbeitung der Abschlagsrechnungen realisiert und diese dann in Folgeprojekten systematisch zum umfassenden Portal für alle Fachbereiche ausgebaut.

Grundlage der umgesetzten Informations- und Analyseprozesse ist ein zentrales Data Warehouse auf Basis des Microsoft SQL Servers. Für die Auswertung der Daten werden je nach Bedarf OLAP-Analysen mit den Microsoft Analysis Services und Power BI sowie ML-Funktionalität (Machine Learning) aus der Cloud genutzt.

Als wesentlicher Erfolgsfaktor des Projekts hat sich der Einsatz eines anwenderfreundlichen Web-Frontends basierend  auf GAPTEQ erwiesen. Durch das einfache Handling der Software konnte das interne Projektteam von PUREN nach der anfänglichen Unterstützung durch QUNIS schnell eigenständig weitere Module umsetzen. Inzwischen sind neben einigen Detail-Anwendungen vor allem drei zentrale Geschäftsprozesse in GAPTEQ abgebildet:

1. Transparenter Prüf- und Freigabeworkflow für Abschlagsrechnungen

Was die Sachbearbeiter in der Buchhaltung früher einzeln in Excel und auf Papier erledigen mussten, läuft heute größtenteils automatisiert. Abschlagsrechnungen der Krankenkassen in verschiedensten Dateiformaten werden maschinell in GAPTEQ eingelesen und vom System geprüft. Die integrierte Power BI-Datenbank gleicht dafür Umsatz- und Absatzdaten sowie bereits geleistete Abschlagszahlungen, die per Schnittstelle aus dem ERP-System importiert werden, mit den Rechnungsdaten ab.

Automatisierte Datenströme sorgen für zuverlässige Ergebnisse, auf deren Basis dann der Workflow in GAPTEQ angesteuert wird. Gemäß der hinterlegten Matrix, z.B. je nach Höhe der Zahlungssumme, gelangt die Rechnung nach Freigabe durch die Sachbearbeiter oder ihre Vorgesetzten zur Zahlung an die Abteilungen Customer Service und die Finanzbuchahltung. Das Tracking und die Bearbeitung der zahlreichen Rabattverträge konnte PUREN so in einem übersichtlichen Standard-Workflow mit den Aktionen „Eingabe, Prüfung, Signatur, Zahlung“ umsetzen. Die Mitarbeiter der verschiedenen Abteilungen werden im anwenderfreundlichen Web-Portal sicher durch ihr Tagesgeschäft geführt, während aufwändige Arbeitsroutinen wie Datenimport, Berechnungen, Datenabgleich und Validierung automatisch im leistungsstarken Backend ablaufen.

2. Präziser Forecast für langwierige Bestell- und Lieferketten

Arzneimittel müssen für die Patienten jederzeit in ausreichender Menge verfügbar sein – in der globalisierten Pharmabranche sind jedoch lange Bestell- und Lieferketten üblich. So sind für Produkte, die PUREN Pharma von seiner indischen Muttergesellschaft bezieht, Vorlaufzeiten von bis zu sechs Monaten einzuplanen. Ein möglichst präziser Forecast der erwarteten Absatzzahlen als Grundlage für punktgenaue Besellungen ist daher erfolgsentscheidend.

Im Rahmen des „Tender Managements“ hat das interne BI-Team dafür eine Plattform für Planung und Forecast realisiert, die sich vom Vertrieb über das Bestands und Produkmanagement bis zum Einkauf durchzieht. Durch maschinell erzeugte Vorschlagswerte erreicht PUREN dabei eine sehr hohe Forecast-Genauigkeit. Die Vorschlagswerte werden mit Machine-Learning-Funktionalität aus der Cloud in drei verschiedenen Algorithmen berechnet.

Neben den historischen ERP-Daten fließen u.a. auch externe Marktdaten aus den Apotheken in die Kalkulationen ein. Die Planer können die Vorschlagswerte in ihren Planmasken dann übernehmen oder manuell anpassen. Durch übersichtlich visualierte Berichte, die z.B. die Entwicklung der Umsatzdaten und Marktanteile zeigen, werden sie bei ihrer Entscheidungsfindung unterstützt und können gegebenfalls Abweichungen vom Vorschlag fundiert herleiten und begründen.

Während früher Produktprognosen in Tausenden von Excel-Dateien gepflegt wurden, wird der Forecast heute in der leistungsfähigen Systemumgebung effizient und zuverlässig erstellt und täglich aktualisiert. Das Supply Chain Management kann für seine monatlichen Bestellungen auf sehr präzise Verkaufsprognosen im Portal zugreifen.

3. Strategische und operative Steuerung der Produktlaunches

Die Lösung unterstützt zudem sämtliche Prozesse rund um die Portfolio-Planung und die Einführung neuer Produkte. Sowohl die Entscheidungsfindung als auch die Umsetzung von Produkt-Launches wird dabei mit allen involvierten Fachbereichen in der einheitlichen Systemumgebung gesteuert. Da es sich um langfristige Projekte handelt, sind hier vor allem der hohe Standardisierungsgrad und die nachvollziehbare systemgestützte Dokumentation entscheidende Vorteile. Die Systemlösung reduziert damit die Risiken durch Spezialwissen, das an einzelne Mitarbeiter gebunden ist, und fördert
stattdessen die unternehmensweite Zusammenarbeit im mehrjährigen Projekt durch standardisierte Prozesse und klar definierte Workflows.

Der Launching-Prozess startet bei PUREN mit dem Monitoring auslaufender Patente. Der Zeithorizont bis zum Patent-Verfall der überwachten Produkte beträgt im Schnitt fünf bis sechs Jahre. Um erfolgsversprechende Kandidaten für die eigene Generika-Produktpalette zu ermitteln, werden dabei im System Business Cases durchgespielt und Szenarien mit vielfältigen Annahmen gebildet. Typische Parameter sind beispielsweise Marktdaten zu Absatz und Umsatz in den Apotheken, mögliche Verpackungsgrößen, verschiedene Rabattverträge, Zertifizierungs- und QM-Kosten, usw. Durch die mächtige Analyse-Power im Backend können die Fachanwender im Verlauf der Zeit auch jederzeit Szenarien mit veränderten Rahmenbedingungen oder Auswertungen der „Pipeline“ auf Knopfdruck erstellen.

Die Entscheidung für einen Produktlaunch fällt so auf der Basis genauer Zahlen und Fakten. Die operative Umsetzung eines Launches, der sich wiederum über rund 18 Monate ziehen kann, wird dann ebenfalls in der Systemlösung gesteuert und dokumentiert. Ab diesen Zeitpunkt wird das Projekt zu einem unternehmensweiten Workflow- Thema. GAPTEQ sorgt als Arbeitsumgebung mit transparenten Abläufen und Alerts für die sichere und effiziente Abwicklung des komplexen Prozesses. Alle Abteilungen arbeiten dabei mit einheitlichen Material- Stammdaten aus dem zugrundeliegenden Data Warehouse.

Die Vorteile: Transparenz, Effizienz und Qualität gesteigert

PUREN Pharma hat mit seiner flexiblen BI-Lösung zentrale Geschäftsprozesse automatisiert. Durch die Gestaltung digitalisierter End-to-End-Prozesse und die Integration unterschiedlichster Datenformen wurden die Effizienz und Qualität von Abläufen und Informationen erheblich gesteigert. Individuelle Anforderungen des Pharmaunternehmens konnten dabei flexibel in einem standardisierten Microsoft-Umfeld abgebildet werden. Entstanden ist ein unternehmensweites Portal für alle Nutzergruppen und verschiedene Themen.

Ein wesentlicher Vorteil ist die anwenderorientierte Nutzeroberfläche. GAPTEQ dient sowohl als einfach bedienbares Web-Frontend für die leistungsstarke Analyse-Architektur und unterstützt zugleich mit dezidierter Workflow- Funktionalität die unternehmensweite Zusammenarbeit und Kommunikation. Sämtliche Nutzer arbeiten dabei auf einer zentralen Datenbasis, und sämtliche Eingaben sind nachvollziehbar im System dokumentiert.

Das Projektteam von PUREN kann die Systemlösung jederzeit selbst weiter ausbauen, verschiedenste Daten integrieren, Eingabe-Formulare und Reports gestalten und Workflows mit dezidierten User-Berechtigungen definieren. Im nächsten Schritt sollen Pozesse für die Vertragsverwaltung, die Einkaufspreis-Steuerung und das Qualitätsmanagement umgesetzt werden. Die Microsoft Standardlösung, die bereits heute On-premise- und Cloud-Produkte in einer Hybrid-Architektur kombiniert, gewährleistet dabei einen jederzeit bedarfsgerecht skalierbaren und kosteneffizienten Systemausbau.

Die Projekt-Highlights

  • Komplexe Geschäftsprozesse digitalisiert, automatisiert und standardisiert
  • Transparente Workflows, aktive Nutzerführung mit Warnfunktionen
  • Anwenderfreundliche Nutzeroberfläche für ausgefeilte BI- und MLArchitektur
  • Schnelle Analyse und übersichtliche Visualisierung von Daten
  • Flexible Integration diverser Vorsysteme und Dateiformen
  • Effiziente und sichere Rechnungsprüfung und -Bearbeitung
  • Präziser Forecast mit maschinellen Vorschlagswerten
  • Sichere stragische und operative Steuerung mehrjähriger Launching-Projekte
  • Einheitliches Web-Portal mit zentraler Datenbasis für alle Fachbereiche
  • Valide Daten und Ergebnisse durch Automatisierung
  • Excel-Insellösungen reduziert
  • Investitionssichere, einfach skalierbare Standardsoftware

Mehr zu PUREN Pharma: Als deutsches Traditionsunternehmen mit einem über Jahrzehnte gewachsenen Produktportfolio für Praxis, Klinik und Selbstmedikation stellt PUREN die Weichen als ein zukunftsorientierter Partner im Gesundheitswesen. Mit über 120 kostengünstigen Produkten in Topqualität für den Einsatz in der Praxis, Klinik und Selbstmedikation bietet PUREN ein umfassendes, etabliertes Spektrum für fast alle relevanten Therapieoptionen. Durch umfassende Rabattverträge ist PUREN dabei ein starker Partner für Ärzte, Apotheken, Krankenkassen und Patienten zum Erhalt der Ökonomie im Gesundheitswesen. Es ist das erklärte Ziel von PUREN, durch hochwertige, preisgünstige Arzneimittel zur Gesunderhaltung aller Menschen beizutragen.

AI funktioniert anders als BI. Oder: Empfehlungen für die Verankerung von AI in Ihrem Unternehmen.

Erstellt am: Freitag, 20. September 2019 von Monika Düsterhöft

Obwohl sich AI und BI auf den ersten Blick mit demselben Thema, also mit Daten, deren Analyse und der Erkenntnisgewinnung daraus beschäftigen, ist es wichtig zu verstehen, dass AI anders funktioniert als BI.

Bei BI fußt das methodische Vorgehen auf einem Gegenstromverfahren, dessen Ziel es ist, eine strukturierte Datenhaltung, in der Regel ein Datawarehouse, mit all den notwendigen Daten aufzubauen, um definierte KPIs möglichst akkurat ausspielen zu können.

Die AI hingegen stellt Werkzeuge, um einen explorativen Prozess zu begleiten, der sich mit Target Scoping, Data Understanding, Data Preparation und Modelling, Evaluation und Deployment beschäftigt – und zwar ergebnisoffen, inklusive „Lizenz zum Scheitern“, wenn Analyseideen in manchen Fällen in einer Sackgasse landen.

AI hat die Lizenz zum Scheitern

Im Zweifel heißt es zurück auf Start und checken, ob das gesetzte Ziel mit den vorhandenen Daten überhaupt zu erreichen ist. Oder ob man eventuell andere Erkenntnisse gewonnen hat, die nichts mit der ursprünglichen Zielsetzung zu tun haben oder diese sogar auf den Kopf stellen.

So kann sich beispielsweise nach der AI-basierten Analyse der Kundendatenbasis herausstellen, dass ein Angebot immer an eine völlig falsch segmentierte Zielgruppe ausgespielt worden ist. Es könnte sich erweisen, dass ein Testzyklus keinerlei Einfluss auf das am Ende tatsächlich erzielte Ergebnis hatte, oder eine Mustererkennung könnte Next-Best-Action oder Next-Best-Offer-Empfehlungen nahelegen, die erst durch das Einbeziehen von Social-Media-Aktivitäten sichtbar geworden sind.

Um nun die in Ihrem Unternehmen schlummernden Potenziale und Einsatzfelder für AI zu finden, sollten Sie nicht einfach nur versuchen bekannte AI Use Cases zu kopieren. Ebenso wenig zielführend ist es, sich ohne passende Methodik auf Ideenjagd für denkbare AI-Projekte, AI-Angebote oder AI-Lösungen zu begeben.

Unsere klare Empfehlung lautet stattdessen: Schauen Sie sich Ihre vorhandenen Prozesse, Produkte und Services an. Identifizieren Sie Brüche und formulieren Sie Wünsche und Ziele, was Sie gerne effizienter, zielgerichteter, transparenter, smarter, on top erreichen wollen.

AI als Werkzeug verstehen

Denken Sie AI als Werkzeug, das Ihnen helfen kann, Muster und Auffälligkeiten zu entdecken und damit den Maßnahmen, die zum gesetzten Ziel führen, näher zu kommen. Oder schauen Sie sich Prozesse unter dem Aspekt der Wiederholbarkeit oder Effizienzsteigerung an und arbeiten Sie die Abschnitte heraus, die von einem Algorithmus gelernt und übernommen werden können.

AI kann nicht nur neue Business Modelle ermöglichen, AI verfügt über ausgereifte Tools, die Ihnen schon heute dabei helfen, etablierte Prozesse zu optimieren und vorhandene Produkte oder Angebote weiter auszubauen. Identifizieren Sie die dafür vorhandenen Daten und Datenquellen, bewerten Sie deren Umfang und Qualität und definieren Sie, wo die Daten zusammengeführt und gespeichert werden sollen, um für das Arbeiten mit AI zur Verfügung zu stehen.

Als geeignetes Konzept hierfür hat sich ein Data Lake erwiesen, in dem sowohl strukturierte als auch polystrukturierte Daten verwaltet werden. Denn im Data Lake kommt die BI-Welt mit Big Data als Grundlage für AI-Anwendungen zusammen.

Egal ob sie in einer Prozessoptimierung oder in einer Produkt- oder Service-Diversifizierung mündet, soll der Einsatz von AI nachhaltig erfolgreich sein, ist ein weiterer Punkt zu berücksichtigen: setzen Sie AI-Vorhaben immer unter Einbeziehung der Organisation auf.

Ein quasi im Reagenzglas entstandenes AI-Ergebnis zurück in die Linienorganisation zu führen, ist eine riesige Herausforderung, denn die Akzeptanz spielt auch bei AI, wie bei allen Innovations- und Change-Prozessen, eine wesentliche Rolle.

AI erlebbar machen

Machen Sie also Beobachter zu Beteiligten, um typische Aversion gegen aufoktroyierte Themen, an denen man nicht selbst mitgewirkt hat, zu vermeiden und bauen Sie parallel zur Entwicklung des AI-Projektes das Verständnis der Mitarbeiter für die Art und Weise, wie AI funktioniert auf.

Dabei führt der Weg zu AI über den Zugang zu den Methoden. Mag es auch noch so verlockend sein, Ansätze und Use Cases einfach zu übernehmen, so empfiehlt sich doch auf jeden Fall zusätzlich der funktionsgetriebene Zugang. Denn dieser baut schneller das wichtige Verständnis auf und schärft darüber hinaus den Blick für die eigenen, ganz individuellen Potenziale. Ganz nach dem Motto: Verstehe was eine Anomalie ist und wie man sie aufdeckt, dann wirst Du auch schneller darauf kommen, wo sie in Deinem Unternehmen vorkommen könnte.

Und noch ein Tipp in Richtung der organisatorischen Verankerung: Bringen Sie nicht nur Daten in einen Zusammenhang, lösen Sie sich auch intern von künstlichen Grenzen und führen Sie BI- und Big-Data-Initiativen zusammen. Denn obwohl die Methodiken unterschiedlich sind, arbeiten beide oft mit denselben Daten und mit einer großen Schnittmenge an gleichen Werkzeugen.

AI integrieren

Datensilos und organisatorische Grenzen für die Datenarbeit machen in Zeiten von Digitalisierung und datengetriebener Unternehmen wenig Sinn; nur unternehmensweite Konzepte für das Datenmanagement inklusive BI, Big Data und Data Governance können künftig erfolgreich sein. Fördern Sie daher die Zusammenarbeit und schaffen Sie das Bewusstsein für die kollaborative Datenarbeit – je früher desto besser.

Sie wollen mehr zu den AI-Methoden erfahren?

Mein Tipp: Holen Sie sich die kostenfreien QUNIS AI FACTHSHEETS. Unser Data Science Experten geben einen Überblick zu neun erfolgreichen AI-Methoden. Sie erklären kompakt, welche AI-Methode sich wann am besten eignet, welche Fragestellungen damit konkret beantwortet werden und welche Daten erforderlich sind. QUNIS AI FACTSHEETS

Hilfe im Dschungel der Analytics Tools. Wir haben den Markt für Sie sondiert.

Erstellt am: Dienstag, 16. Juli 2019 von Monika Düsterhöft

Kaum ein Segment im Softwaremarkt unterliegt derzeit so vielen Veränderungen wie das der analytischen Werkzeuge.

Jedes Jahr sprudeln neue Produkte auf den Markt: branchenspezifische Nischenprodukte, Produkte für spezielle Aufgabenstellungen wie Textanalysen, Produkte für spezielle Fachabteilungen wie das Marketing, und, und, und…. Hinzu kommen noch umfangreiche Analytics-Plattformen, die versuchen, viele Anwendungsbereiche abzudecken oder Nutzer verschiedenster Kompetenzstufen anzusprechen.

Manche Tools setzen zudem auf einfache Zusammenarbeit in Teams, andere auf automatisiertes Reporting oder auf gute Visualisierungsmöglichkeiten. Jedes Produkt hat seine Vor- und Nachteile und ist beim heutigen Entwicklungs- und Innovationsdruck sicher noch nicht am Ende seiner Fähigkeiten angekommen. Nicht alle Produkte werden sich auf Dauer am Markt durchsetzen können – alle Produkte werden sich aber mit Sicherheit weiterentwickeln.

Man muss nicht zwingend Data-Science-Profi sein.

Der derzeitige Markttrend geht in Richtung Augmented Analytics. Dies bedeutet, mit den entsprechenden Werkzeugen können auch mathematisch und statistisch versierte Fachanwender und Citizen Data Scientisten Künstliche Intelligenz für Ihre Datenauswertung nutzen. Denn mittels Artificial Intelligence (AI) und Machine Learning werden Analyseschritte wie die Auswahl des richtigen Algorithmus von den Tools automatisiert, so dass der Nutzer kein Data-Science-Profi sein muss, um bestimmte Data-Science-Analysen durchführen zu können.

Es werden zum Beispiel Daten mit einer Clusteranalyse gruppiert, ohne dass der Nutzer verstehen muss, was im Hintergrund passiert. Ebenso können mit einem Klick Umsätze oder ähnliche geschäftsrelevante Daten mittels Zeitreihenanalysen vorhergesagt werden. In manchen Tools kann zudem durch die Einbettung von AI die Suche nach relevanten Daten mittels Sprachsteuerung oder Google-ähnlicher Suchfunktionen erleichtert werden. All das rangiert unter Augmented Analytics und gibt einen Eindruck davon, wie sich der Markt an Analytics-Werkzeugen weiter wandeln wird.

Welches Tool passt zu mir?

Bei der Vielzahl an Produkten und dem stetigen Wandel ist es schwer, den Überblick zu behalten. Wir haben den Markt gescannt und die Tools anhand typischer Nutzeranforderungen segmentiert.

  • Marktsegment 1: Reportingwerkzeuge
  • Marktsegment 2: BI & Analytics Suiten
  • Marktsegment 3:  Machine Learning (ML) & Data Science (DS) Plattformen
  • Marktsegment 4: Integrierte Entwicklungsumgebungen (IDEs) und Notebooks

Diese Segmentierung soll Ihnen helfen, das für Sie passende Tool zu finden. Um nun die für Sie passende Zuordnung zu identifizieren machen Sie sich bewusst, was Sie von dem Analysewerkzeug erwarten. Folgende Fragen unterstützen Sie dabei:

  • Reichen starre und einfache Visualisierungen von Daten, die sich als Bilddatei oder Tabelle abspeichern können?
  • Sollen mehrere Nutzer in einer explorativen Analyse zusammenarbeiten können?
  • Wenn ja, inwiefern soll die Zusammenarbeit unterstützt werden?
  • Nutzer welcher Fähigkeitsstufen sollen kollaborieren?
  • Wie ist deren Aufgabenverteilung?
  • Welche Anforderungen bestehen bezüglich Visualisierungen, statistischen und Machine-Learning-Funktionalitäten?
  • Inwiefern soll das Tool Data-Science-Prozesse wie das Trainieren von ML-Modellen unterstützen?

Mit Antworten auf diese Fragen sehen Sie schnell, in welchem Marktsegment sich das zu Ihren Anforderungen passende Tool befindet. Reicht Ihnen ein Reportingwerkzeug (Marktsegment 1) oder suchen Sie eher ein Tool für einen Power User (Marktsegment 2)? Oder gehen die Nutzer schon einen Schritt weiter in Richtung Data Science (Marktsegment 3)? Oder wollen Ihre Nutzer vollste Flexibilität und scheuen sich nicht vor anspruchsvoller Programmierung in Entwicklungsumgebungen (Marktsegment 4).

Marktsegmentierung von Analyse-Werkzeugen 

Sie fallen in mehrere Segmente? Kein Problem.

Die Anforderungen und Fähigkeiten der Nutzer in Ihrem Unternehmen gehen weit auseinander, so dass Sie nicht nur EIN relevantes Marktsegment für sich identifizieren? Keine Angst, das ist normal. Mit der richtigen Strategie und einem durchdachten Datenmanagementkonzept können diverse Tools auch problemlos miteinander kombiniert werden. Gerne unterstützen wir Sie hier bei der Auswahl und Implementierung, so dass Sie in Ihrem Unternehmen die datenbasierte Entscheidungsfindung mit Technologie der neuesten Generation schnellstens vorantreiben können.

Mein Tipp: Denken Sie zudem daran, dass die Nutzer mit dem Werkzeug gerne arbeiten und beziehen Sie diese in die Auswahl mit ein. Ich als Data Scientistin kann Ihnen sagen: „Nichts erschwert die Kreativität bei der explorativen Analyse mehr als eine Software, mit der man sich nicht wohl fühlt.“

In diesem Sinne, nutzen Sie unsere Segmentierung zur Orientierung und sprechen Sie uns gerne an. Ich freue  mich auf den Austausch mit Ihnen!

Übrigens – unsere beliebtesten Data Science Algorithmen haben wir ebenfalls übersichtlich für Sie zusammengestellt. Sie finden diese direkt hier auf unserem kostenfreien QUNIS MACHINE LEARNING CHEAT SHEET