Archiv für die Kategorie Self Service BI

Rothoblaas: Mobiles Reporting, Data Warehousing und saubere Daten für die weitere Expansion

Erstellt am: Donnerstag, 16. Juli 2020 von Monika Düsterhöft

Das international aufgestellte Südtiroler Unternehmen Rothoblaas mit weltweit 21 Tochter-Unternehmen hat sein veraltetes Reporting-System durch eine moderne BI-Lösung mit zentralem Data Warehouse ersetzt. Mit einem global verfügbaren mobilen Vertriebsreporting und einer jederzeit einfach skalierbaren, modernen Berichtsplattform ist das dynamische Unternehmen nun bestens für die Gegenwart und sein zukünftiges Wachstum aufgestellt.

Die Berichtsplattform mit zentralem Data Warehouse war für uns eine Investition in die Zukunft. Wir sind damit fit für weiteres Firmenwachstum und für den Umgang mit der Ressource Daten. Dass wir unsere Daten jetzt sauber hinterlegt haben und die Analysewelt flexibel ausbauen können, war der einzig richtige Weg.


Peter Prinoth,
Projektverantwortlicher Leiter ERP & BI,
Rothoblaas Srl

Mobile Informationsversorgung für beständig wachsendes Vertriebsteam mit altem System nicht mehr abbildbar

1991 von Robert Blaas gegründet, entwickelt Rothoblaas Produkte und Dienstleistungen für die Profis im Baugewerbe und ist heute ein international erfolgreiches Familienunternehmen. Neben der Zentrale in Kurtatsch in Südtirol ist Rothoblaas derzeit mit 21 Tochtergesellschaften sowie einer eigenen Verkaufsmannschaft in über 50 Ländern präsent und bearbeitet weltweit über 80 Märkte. Und Rothoblaas wächst kontinuierlich; jedes Jahr kommen zwei oder drei Gesellschaften zum Unternehmen dazu. Dazu trägt nicht zuletzt die weitgespannte internationale Vertriebsorganisation des Unternehmens bei.

Um den Außendienst bei seiner täglichen Arbeit vor Ort zu unterstützen, benötigte das dynamische Unternehmen ein zeitgemäßes Informationssystem für das unternehmensweite Vertriebsreporting. Die rund 250 Vertriebsmitarbeiter sollten per Web jederzeit Zugriff auf die aktuellen Kennzahlen zu ihren Kundenkontakten haben und diese auch überall mit ihrem Smartphone abrufen können.

Mit dem vorhandenen Reporting-Tool war diese Informationsversorgung nicht realisierbar. Die veraltete Lösung war von den steigenden Datenmengen überfordert, zu langsam und zu starr. Neue Auswertungen aus dem ERP-System beispielsweise mussten per SQL-Skripts definiert werden, und die Einbindung weiterer Vorsysteme als Datenquellen für kombinierte Auswertungen war kaum möglich. Rothoblaas entschloss sich daher zur Einführung einer modernen BI-Lösung auf Basis eines zentralen Data Warehouse.

QUNIS überzeugt mit Know-how und Chemie

Wichtig für die neue BI-Lösung war, dass alle Standorte auf einer zentralen Datenbasis mit konsistenten Zahlen und Strukturen arbeiten und dass neu hinzukommende Gesellschaften auch mit ihren eigenen ERP-Systemen barrierefrei eingegliedert werden können. Rothoblaas hat sich angeschaut, wie andere Unternehmen die Sache angehen und sind durch Empfehlungen auf QUNIS als Beratungs- und Realisierungspartner gestoßen.

Die guten Referenzen, die geballte Kompetenz und langjährige Erfahrung der Data- Warehouse- und BI-Spezialisten QUNIS wurde als sehr überzeugend empfunden, und von Anfang an hat die Chemie zwischen den Projektpartnern gestimmt.

Gemeinsam mit QUNIS startete das Projektteam Ende 2016 die Implementierung mit der Konzeption und dem Aufbau eines Data Warehouse auf Basis des Microsoft SQL Servers. Als Datenquelle wurde zunächst das vorhandene ERP-System Comarch per Schnittstelle angeschlossen, in weiteren Projektschritten kamen dann die Buchhaltung mit Microsoft Dynamics NAV, das CRM System und schließlich die Planungslösung Prevero dazu. Durch die Zusammenführung der verschiedenen Quelldaten sind seitdem jederzeit kombinierte Ad-hoc-Analysen auf Knopfdruck möglich.

Einfach Integration unterschiedlicher Quellsysteme ist einer der größten Vorteile der neuen BI-Lösung

Peter Prinoth sieht in der einfachen Integration unterschiedlicher Quellsysteme einen der größten Vorteile der BI-Lösung: „Durch die Einbindung von Microsoft Dynamics NAV können wir nun wesentlich schneller und detaillierter Profit- und Cost- Center-Analysen oder Zwischenbilanzen erstellen und die IC-Abstimmung durchführen. Aus Prevero fließen außerdem unsere Plandaten ein und stehen für Plan-Ist-Vergleiche von Umsätzen und Budgets bereit, und die CRM-Lösung steuert die Kundendaten bei. Wir wollen künftig noch weitere Datenquellen einbinden und können außerdem jederzeit neue Gesellschaften mit ihren bestehenden Systemen integrieren. Das gibt uns sowohl fachlich als auch hinsichtlich unserer Wachstumsstrategie volle Flexibilität für künftige Entwicklungen.“

Das weltweite Rollout des Vertriebsreportings wurde im Juni 2018 gestartet, und nach einer Testphase im Parallelbetrieb wurde das Altsystem Ende 2018 abgeschaltet. Seitdem wird die BI-Plattform kontinuierlich nach Bedarf weiter ausgebaut. QUNIS kümmert sich weiterhin um die Umsetzung neuer Anforderungen im Core des Data Warehouse, während das BI-Team von Rothoblaas eigenständig Anpassungen auf der Ebene der fachbezogenen Data Marts vornehmen kann. Viele Fragen können dabei auch schnell in telefonischen Webview- Sitzungen mit der QUNIS-Beraterin von Rothoblaas geklärt werden.

Etabliert und in beständiger Weiterentwicklung

Die BI-Lösung ist heute in allen Standorten weltweit etabliert. Die Vertriebs-Mitarbeiter greifen über die Microsoft Reporting Services (SSRS), das kostenlose Reporting-Frontend des Microsoft SQL Servers, auf ihre Standardreports zu und können damit ihre Zahlen beispielsweise nach Kunden, Produktgruppen oder Artikeln filtern. Die Berichte und Analysen stehen auf dem Smartphone in gleichem Umfang zur Verfügung. Die Bedienung ist einfach und selbsterklärend, so dass auch zur Einarbeitung der externen
Handelsvertreter ein von der Zentrale bereitgestellter Nutzungsleitfaden mit Screenshots ausreichte.

Inzwischen stehen Datencubes für klassische Analysen in den Bereichen Sales, Einkauf, Logistik und Finance bereit. Besonders hilfreich für die weltweite Anwendung ist dabei die automatische Währungsumrechnung, die in lokaler Währung verbuchte Umsätze direkt zum tagesaktuellen Kurs in Euro darstellt. Den Fachabteilungen und BI-Verantwortlichen von Rothoblaas gehen aber auch die Ideen für weitere Anwendungsbereiche nicht aus. In nächster Zeit sollen beispielsweise IC-Margen und -Flüsse im Reporting abgebildet, eine Produktqualitätskontrolle mit Lieferantenbewertung ergänzt und ein erst kürzlich im ERP-System umgesetztes Reklamationsmanagement für Auswertungen erschlossen werden.

Peter Prinoth sieht viel Potenzial für die Weiterentwicklung: „Das Data Warehouse bietet uns als zentrale Analysebasis vielfältigste Möglichkeiten für den Ausbau unseres Reportings, und wir erschließen ständig neue Datenfelder aus dem ERP-System für diesen Datentopf. Da wir organisatorische Änderungen oder neue fachliche Auswertungen selbst im System umsetzen können, funktioniert unsere Weiterentwicklung sehr schnell und kosteneffizient.“

Augenmerk auf Reportgestaltung zahlt sich aus

Neben dem Aufbau des Data Warehouse mit dem zugehörigen Datenmanagement bildet die Ausgestaltung des Reportings im Frontend den zweiten großen Schwerpunkt des BI-Projekts bei Rothoblaas. Basis dafür ist ein schlüssiges Informationskonzept, das sich gleichermaßen auf die Gestaltung des Backend- als auch des Frontend-Bereichs auswirkt.

Werden beispielsweise zu viele Kennzahlen und Detailinformationen auf Basis der entsprechend benötigten umfangreichen Datencubes in den Berichten abgebildet, sind Performance-Probleme im System absehbar – vor allem in großen Nutzer-Szenarien wie bei Rothoblaas. Moderne Informationssysteme zielen stattdessen darauf ab, dem Nutzer mit gezielten, übersichtlich visualisierten Informationen einen schnellen Überblick über sein Aufgabengebiet zu verschaffen, von dem aus er dann nach Bedarf in tiefere Analysen einsteigen kann. Dieser Aspekt war bei Rothoblaas insbesondere beim Übergang vom vorigen Tabellen-orientierten Reporting mit vielen Detailzahlen in die Welt der dynamischen Reports zu berücksichtigen.

Das Projektteam hat entsprechend viel Augenmerk auf die optimale Balance zwischen Übersichtlichkeit und Detailgrad der Berichte gelegt. Gerade an dieser Stelle profitiert Rothoblaas auch von der großen Projekterfahrung der QUNIS-Berater, wie Peter Prinoth bestätigt: „Die Planung einer passenden BI-Umgebung erfordert viel Know-how und Erfahrung auf unterschiedlichen Ebenen. Mit QUNIS haben wir den richtigen Partner an der Seite, auf dessen Fachwissen und Praxiserfahrung wir uns verlassen können.

Im Frontend-Bereich ist außerdem die Frage der Lizenzkosten ein zentrales Thema, das im Rahmen des Informationskonzepts vorab geklärt werden sollte. Hier ist zu berücksichtigen, wie viele Nutzer heute und in Zukunft zu erwarten sind und welche Anforderungen an das Reporting bestehen.

Mit den Microsoft Reporting Services (SSRS) konnte Rothoblaas den weltweiten Rollout des Vertriebsreportings kosteneffizient realisieren und alle Anforderungen abdecken. Das Werkzeug unterstützt wie gewünscht ein zuverlässiges Standardreporting mit Self-Service-Analysen und mobilem Datenzugriff. Beim weiteren Ausbau wird eventuell ein flexibleres BI-Frontend wie beispielsweise Pyramid Analytics interessant, das Rothoblaas dann einfach gegen die Reporting Services austauschen und auf das Data Warehouse aufsetzen kann.

Der richtige BI-Schritt in die Zukunft

Für Rothoblaas hat sich der Schritt in die zukunftsweisende BI-Welt gelohnt, wie Peter Prinoth festhält: „Die Berichtsplattform mit zentralem Data Warehouse war für uns eine Investition in die Zukunft, die jetzt und auf Dauer Mehrwert bringt. Einige Unternehmen in unserer Region waren am Anfang unseres Projekts noch skeptisch, weil sie eine Data-Warehouse-Lösung für ein Unternehmen unserer Größenordnung für überdimensioniert hielten – inzwischen haben die meisten selbst ähnliche Projekte gestartet, mehrere davon zusammen mit QUNIS, deren guter Ruf sich in Südtirol schnell herumgesprochen hat.“

Mehr zu Rothoblaas: Rothoblaas ist ein multinationales Unternehmen mit Ursprung in den Südtiroler Alpen, welches marktführend in der Entwicklung von technologisch hochwertigen Lösungen für den Holzbau ist. Rothoblaas entwickelt Produkte und Dienstleistungen für die Profi s im Baugewerbe: Holzbauer, Zimmerer, Ingenieure, Architekten und Monteure von Absturzsicherungssystemen. Die Produkte aus der Reihe HOLZ TECHNIC befriedigen zudem alle Anforderungen und Bedürfnisse der Fachhändler von Baumaterialien.

QUNIS Scalable Self Service BI – analytische Datenplattform mit Zukunft

Erstellt am: Mittwoch, 1. Juli 2020 von Monika Düsterhöft

Self Service BI: Der Ruf nach leichten auch von der Fachabteilung zu bedienenden Werkzeugen wurde erhört

Globalisierung, vernetzte Wertschöpfungsketten und nicht zuletzt Ausnahmesituationen wie die Finanz- und Corona-Krise zwingen Unternehmen, immer schneller auf neue Anforderungen zu reagieren. Die Fähigkeit, aus Daten agil Informationen zu generieren, um gute und sichere Entscheidungen zu treffen wird zum wichtigen Überlebens- und Wettbewerbsvorteil.

Der Anspruch an Agilität und Schnelligkeit setzt Fachanwender und Datenexperten unter Druck. Das geforderte Tempo mit den bisherigen BI-Enterprise-Vorgehensmodellen und dem Einsatz traditioneller BI-Tools zu halten, wird immer schwieriger. Aus diesem Leidensdruck heraus wurde in den letzten Jahren der Ruf nach einfacheren Werkzeugen, die sich auch von Fachanwendern bedienen lassen, immer lauter.

Die Softwarehersteller haben darauf mit der Entwicklung von Lösungen reagiert, die sie als „Self Service BI“ anbieten.

Die unter diesem Schlagwort rangierenden Tools und Plattformen umfassen in der Regel ein fachanwenderfreundliches Frontend gepaart mit Funktionen für das Erledigen einfacher Datenmanagementaufgaben. Letztere erlauben es den Nutzern, mehrere Datenquellen zu verbinden oder lokale Daten aus Excel-Dokumenten direkt im Visualisierungstool zu integrieren. Auch können sie Quellen aus dem Internet sofort mit anzapfen.

Self-Service-BI-Werkzeuge eignen sich also aufgrund ihrer sehr guten und anwenderfreundlichen Funktionen bestens dafür, individuelle Lösungen zu realisieren. Sie erlauben einen deutlich weniger komplexen und zeitintensiven Prozess bei der Abstimmung, bei der direkten Umsetzung mithilfe der Datenmanagementfunktionen und bei der unmittelbaren Publikation der Ergebnisse durch anforderungsnahe Anwender.

Jedoch, die Antwort für eine nachhaltige BI-Lösung liegt nicht allein im Frontend

Was bei der Euphorie für Self Service BI in vielen Fällen vergessen wird: Das wirklich komplexe an BI-Lösungen ist nicht die Gestaltung der Berichte und Dashboards im Visualisierungstool. Die weitaus größere Herausforderung liegt in der Aufbereitung von aussagekräftigen und wahrheitsgetreuen Datenräumen als Basis für die Visualisierungen.

Zur Umsetzung der dafür notwendigen, teilweise sehr vielschichtigen Datenmanagementaufgaben verfügen professionelle Datenbanken für Enterprise Data Warehouses und Data Lakes über zahlreiche Spezialfunktionen. Sie ermöglichen die Transformation von Daten, das dauerhafte Monitoring der Datenqualität sowie den möglichst automatisierten Ablauf des Ladens der Daten in den großen Datenspeicher.

Die Frage, die sich nun für Unternehmen stellt, die sowohl Self Service BI ermöglichen als auch Enterprise BI realisieren wollen: Wie setzt man Self Service BI so auf, dass es Hand in Hand mit einer Enterprise-Strategie funktioniert? Zudem haben BI-Initiativen nicht selten zum Ziel, die über Jahre gewachsenen individuellen Reporting-Inseln zu integrieren und Inhalte zu harmonisieren.

Das Geheimnis liegt im Bewusstsein und im Datenmodell

BI-Initiativen können nur gewinnen, wenn Self-Service-BI-Funktionen nicht als eigenständiges Werkzeug gesehen werden, sondern als Speedbooster oder als Ergänzung zum Enterprise Data Warehouse und zum Data Lake. Über die erweiterten Möglichkeiten von Self Service BI in der Visualisierung hinaus sind vor allem die neu gewonnenen Optionen im Datenmanagement für viele Architekturen relevant.

Denn Anforderungen einfach, schnell und agil umzusetzen muss nicht immer heißen, dass dieses Projekt später zwangsläufig in einem gesonderten Werkzeug oder in einem langfristigen Datenchaos endet.

QUNIS bringt den Profi-Boost für Self-Service-BI-Architekturen

Um die Vorteile von Self Service BI und Enterprise BI gleichsam zu nutzen, hat QUNIS den Ansatz des „Scalable Self Service BI“ entwickelt. Dieser ermöglicht schnelle Ergebnisse gepaart mit einem sauber aufgebauten Datenmanagement – ganz bewusst flankiert von Wissenstransfer und Empowerment.

Innerhalb weniger Wochen und mit punktuellem Coaching entstehen per „QUNIS Scalable Self Service BI“ und mit dem Einsatz von Micosoft Power BI komplette BI-Apps. Mit professionellem Design, basierend auf klaren Strukturen und durchgängiger Automatisierung der Prozesse.

  • Ein Self-Service-BI-Projekt bei QUNIS startet stets mit einer kompakten Schulung. Die Vertreter der Fachabteilung lernen die Grundlagen des eingesetzten Tools  kennen. Sie erfahren mehr zu den technischen Details und zur methodischen Vorgehensweise. Zudem bekommen sie beigebracht, wie man eine Datentransformation durchführt, wie man ein Datenmodell richtig aufgebaut und welche Best Practices es gibt.
  • Danach werden in einem meist halbtägigen Anforderungsworkshop die konkrete Problemstellung und die dafür gewünschte Lösung im Hinblick auf einen Self Service Use Case überprüft und der sinnvolle Umfang definiert.
  • Darauf aufbauend entsteht in einem Zeitraum von ca. drei bis zehn Tagen ein Modell, das für die gewünschte Datenmenge passt. Wichtig dabei: Dieses Modell entspricht in Bezug auf Qualität und Professionalität bereits den Kriterien eines Enterprise BI. So werden im Self-Service-BI-Modell etwa die gleichen Namensbezeichnungen und Schlüsselfelder wie in einem Enterprise-Data-Warehouse-Modell genutzt. Ebenso verfügt es über eine Schnittstelle zur Überführung in ein Enterprise BI inklusive einer automatisierten Dokumentation.
  • Anhand des aufgesetzten Self-Service-BI-Modells sehen die Beteiligten, worauf zu achten ist, welche Schritte notwendig sind und wie sich Berichte anfertigen lassen. Diese werden dann in einer Reporting-Mappe zusammengeführt.
  • Um die Lösung im Anschluss selbstständig zu erweitern, empfiehlt es sich zudem über eine Fokus-Schulung Know-how in der Formelsprache DAX (Data Analysis Expressions) anzueignen. So können Fachexperten wie Controller oder Produktionsleiter nachfolgend eigene Kennzahlen entwerfen und umsetzen.

Die mit dem QUNIS Scalable Self Service-Ansatz generierten Self-Service-BI-Lösungen bieten drei ganz zentrale Vorteile: Sie erfordern geringe Investitionskosten, weisen als managed Self-Service-BI eine hohe Qualität und Skalierbarkeit auf und vor allem, sie erfüllen bereits die Standards eines Enterprise Data Warehouse. Hinzu kommt, dass sich die User schon während des Self-Service-BI-Projektes dank entsprechender Schulungsanteile und intensivem Coaching ein umfassendes Prozess- und Technologie-Know-how aneignen.

Von Anfang an ist damit die Brücke für den späteren Transfer in die Enterprise-BI-Strategie gebaut. Sie sind bestens gerüstet, die Weiterentwicklung Ihrer BI-Applikation kompetent zu begleiten und gemeinsam mit den Experten weitere Lösungen aufzubauen. Interessiert? Sprechen Sie uns einfach an KONTAKT

Unser Tipp: Nutzen Sie unsere kostenfreien QUNIS-Webinare und Online-Power-Trainings sowie Schulungsangebote der QUNIS Academy rund um die Self Service BI Plattform „Microsoft Power BI“ und erfahren Sie von unseren Experten aus der Praxis, was für Sie drin steckt.

So arbeiten Sie mit Microsoft Power BI. Siebenteilige Kurzfilmreihe erklärt wie‘s geht!

Erstellt am: Freitag, 1. Mai 2020 von Monika Düsterhöft

Microsoft Power BI – ein mächtiges Tool

Microsoft Power BI ist eine leistungsstarke Business Intelligence Plattform und Analytics-Lösung. Mit Microsoft Power BI kann man sehr schnell Daten aus nicht verbundenen Quellen zusammentragen, analysieren und visualisieren. Anschließend können die erstellten Inhalte auf Dashboards freigegeben und geteilt werden.

Die intuitive Bedienung erlaubt es bereits nach kurzer Einarbeitungszeit verschiedenste Daten zu übersichtlichen, interaktiven Graphiken zu kombinieren. So erstellen Sie aus verstreuten Daten, bedeutsame und interaktive Unternehmens-Insights.

QUNIS Power BI Minis erklären wie‘s geht

In einer siebenteiligen Kurzfilmreihe zeigt unser QUNIS Power BI Spezialist Patrick Eisner Schritt für Schritt, wie Sie mit Microsoft Power BI arbeiten und welche Möglichkeiten die BI-Plattform für Sie bereit hält:

  • Part 1 – Datenintegration
  • Part 2 – Datenvisualisierung
  • Part 3 – Berechtigungen, Hierarchien und Navigation
  • Part 4 – Ein bestehendes Datenmodell erweitern
  • Part 5 – Advanced Visuals
  • Part 6 – Mobile Devices
  • Part 7 – Power BI Web Portal

Alle QUNIS Power BI Minis finden Sie direkt in unserer QUNIS MEDIATHEK oder  im QUNIS YOUTUBE KANAL

Offen für viele verschiedene Datenquellen

Microsoft Power BI eröffnet die Möglichkeit verschiedene Datenquellen in Office 365 einzubinden. Die Auswahl an möglichen Datenquellen ist groß und wird stetig erweitert. Folgende Kategorien zählen dazu:

  • Dateien: Excel, Text, XML, JSON, Ordner, SharePoint Ordner
  • Datenbanken: SQL Server, Access, Oracle oder SAP HANA
  • Power BI: Datenmodelle, die mit Hilfe von Power BI Desktop erstellt wurden
  • Azure: Azure SQL-Datenbank, Azure SQL Data Warehouse oder Azure Analysis Services-Datenbank
  • Online-Dienste: Aktuell Konnektoren gibt es für mehr als 59 verschiedene Clouddienste wie besispielsweise SharePoint-Online Liste, Salesforce-Berichte, Google Analytics
  • Sonstige: Diese Kategorie umfasst weitere Datentypen wie Vertica (Beta), Web, SharePoint Liste, OData-Feed, Active Directory, Microsoft Exchange, Hadoop-Datei (HDFS), Spark, R-Skript, ODBC, OLE DB, Leere Abfragen

Mein Tipp: Die QUNIS Academy bietet ein breites Spektrum an Schulungen und Trainings. Nutzen Sie diese und lernen Sie die Bandbreite der mächtigen BI-lattform einsetzen und nutzen. Hier finden Sie alle aktuellen Themen und Termine: QUNIS ACADEMY

Self Service Business Intelligence will gelernt sein

Erstellt am: Donnerstag, 7. Dezember 2017 von Sascha

Es war um das Jahr 2010 als das Schlagwort Self Service im Markt für Business Intelligence die Runde machte. Das Thema wurde zunächst stark von Herstellern wie Microsoft, Tableau oder QlikView getrieben, während diese Anforderung in Anwenderunternehmen noch selten formuliert wurde. So mussten wir denn auch in der Beratung häufig zunächst ein Grundverständnis für Self Service BI (SSBI) schaffen, welche Vorzüge SSBI bieten könnte. Vielen Anwendern war gar nicht bewusst, wo SSBI anfängt und wo es endet. Seitdem hat es sich mehr und mehr etabliert und ist aus keinem Projekt mehr wegzudenken.

Selbst wenn es zu Beginn nicht explizit vom Kunden gefordert wird, zeigt sich bei der Ausarbeitung der Anforderungen, dass hier Bedarf besteht. Anwender, meist so genannte Power User, wollen sich ihre Daten immer häufiger selber erschließen und Analysen und Reports erstellen – eigenständig und unabhängig von der IT. Entsprechend wird erwartet, dass eine Business-Intelligence-Lösung und Technologie diese Nutzer bestmöglich unterstützt.

SSBI erfordert Erfahrung im Umgang mit Daten

Doch Self Service Business Intelligence ist kein Selbstläufer, sondern bedeutet für alle Betroffenen ein Umdenken. Man kann dem Anwender nicht ohne Anleitung einfach Werkzeuge an die Hand gegeben, damit er sich seine Daten selbst erschließt oder Reports erstellt. Es ist für ihn ungewohnt oder neu, sich jetzt mit den Tools sowie Fragen auseinandersetzen zu müssen, die Ihm sonst die IT abgenommen hat. Hilfe bei der Nutzung des BI-Frontends als auch die Datenintegration sind daher bei SSBI vonnöten.

Die gilt im noch stärkeren Maße bei der Datenexploration. Diese ist dann sinnvoll, wenn wenig über die Daten bekannt ist und die Explorationsziele nicht genau spezifiziert sind. Der Nutzer muss dann mit Hilfe von Methoden und Verfahren aus dem Gebiet der Advanced Analytics diese Daten selbstständig erforschen und Schlussfolgerungen ziehen können. Ebenso muss er im Explorationsprozess in der Lage sein, die Explorationsziele bei Bedarf verändern und anpassen zu können. Dies setzt viel Erfahrung mit Advanced Analytics voraus.

Ebenso mussten und müssen BI-Software-Hersteller lernen, wie sie SSBI in ihren Produkten am besten unterstützen. Manche Produkte konnten sich am Markt durchsetzen, andere verschwanden wieder. So konnte beispielsweise Microsoft in seinem BI-Stack anfangs nur wenige Tools für SSBI vorweisen: Excel, Power-Pivot, PerformancePointServices und die ReportingServices. Mit der Zeit gesellten sich zu diesen weitere Möglichkeiten hinzu durch MobileReports, PowerBI, PowerView, PowerQuery, AS-Tabular und DAX. PowerBI hat mittlerweile in seiner aktuellen Version sogar Künstliche Intelligenz integriert, um die Datenexploration zu vereinfachen (mehr zu PowerBI finden Sie hier).

IT muss Tools und Infrastruktur harmonisieren

Neben dem Anwender galt es auch für die IT umzudenken. Sie konnte nun nicht mehr einfach einen Cube entwickeln, dem nur mit Spezial-Wissen und als MDX-Experte die richtigen Zahlen zu entlocken waren. Nein, Cubes mussten auf einmal anwenderfreundlich sein! Dies setzte unter anderem voraus, dass man verstand, wie SSBI-Tools mit einem Cube umgehen, denn diese arbeiten eher per Drag-and-Drop mit Measures und Dimension auf den verschiedenen Achsen. Für selbstgeschriebene MDX-Abfragen war da kein Platz. Die IT muss daher Infrastruktur und Tools bestmöglich aufeinander abstimmen, soll SSBI in der Praxis funktioniere. In diesem Zusammenhang hört man gelegentlich auch von Self Service Data Integration (SSDI). Power-Pivot und AS-Tabular waren im Microsoft-BI-Stack die ersten Gehversuche, um den Anwendern die Integration von Daten aus verschiedenen Datenquellen zu einem Datenmodel zu ermöglichen. Dem Thema wird aber bislang noch zu wenig Aufmerksamkeit geschenkt, vielleicht auch weil die Tools dafür noch nicht die notwendige Flexibilität und Leichtigkeit bieten.

SSBI für den Power User

Selbst wenn alle genannten Voraussetzungen und Anpassungen gegeben sind, wird SSBI wohl auch künftig eine Domäne für Power User bleiben. Man muss schon ein gutes Verständnis über die eigenen Daten und Datenmodelle haben, um selbstständig arbeiten zu können. In den Projekten läuft es daher für gewöhnlich darauf hinaus, dass Power-User aus den Daten neue Erkenntnisse gewinnen und diese dann als Report den übrigen Endanwendern (Report-Konsumenten) zur Verfügung stellen.

Weitere Beiträge zu Entwicklungen in der Business Intelligence:

Self Service Business Intelligence mit Microsoft Power BI

Erstellt am: Montag, 26. Juni 2017 von Sascha
Power BI ist Microsofts strategische Antwort auf den Wunsch in Anwenderorganisationen nach mehr Self Service in der Business Intelligence (BI). Informationsmitarbeiter sollen künftig ohne einen aufwändigen technologischen Unterbau flexibel an der Nutzung und Analyse von Daten partizipieren können, um so das Potenzial von BI besser auszuschöpfen. Um diesen Anspruch gerecht zu werden, wollte Microsoft ein leistungsfähiges Tool mit modernen Visualisierungsmöglichkeiten und starken Analyse-Features entwickeln, welches einfach zu bedienen ist und zugleich umfangreiche Kollaborationsmöglichkeiten für Informationsmitarbeiter bietet. Zugleich musste es aber auch für individuelle Anforderungen offen bleiben.

 

Das Ergebnis war Power BI. Die Software ist als Cloud-basierende Lösung konzipiert, kann aber ebenso On-Premises betrieben werden. Sie verfügt über eine weitreichende Office-365-Integration sowie offene Schnittstellen für eigene Entwicklungen. Nutzern steht damit ein umfangreiches Self-Service-BI-Tool zur Datenmodellierung, Analyse und Reporting zur Verfügung, das zudem regelmäßig aktualisiert wird. Power BI reiht sich sehr gut in das bestehende Microsoft-Portfolio ein und wird kontinuierlich weiterentwickelt. Zudem hat sich eine sehr aktive Community gebildet.

 

Berichte visuell ansprechend gestalten

Der übliche Entwicklungszyklus eines Power-BI-Berichtes beginnt in „Power BI Desktop“. Hierbei handelt es sich um die Desktop Applikation von Power BI. Sie verfügt über eine breite Palette an Datenkonnektoren, deren Umfang kontinuierlich erweitert wird. Hier ist auch der Platz, an welchem die Datenmodellierung unter Verwendung der Power-Query-Sprache „M“ stattfindet. Entsprechend dem eingesetzten Architekturszenario – QUNIS sieht hier vier mögliche Architekturvarianten – können die Daten aus der Cloud und oder von On-Premises- Systemen stammen. Sind die Daten nach Bedarf modelliert, lässt sich der Bericht erstellen. Dabei stehen im Standard mehr als 25 Visualisierungsmöglichkeiten zur Auswahl (Über 70 weitere Visualisierungen sind aktuell noch kostenfrei im Web erhältlich). Ist der Bericht vollendet, wird er üblicherweise im „Power BI Service“ in der Cloud oder in einer On-Premisis-Umgebung veröffentlicht. Diese Berichte lassen sich anschließend in Dashboards verwenden oder mit weiteren Usern teilen.

In dem von QUNIS definierten Frontend-Rollenkonzept deckt Power BI drei von vier vorhandenen Rollen ab. Es ist demnach ein passendes Tool für „End User“, „Ad Hoc User“ und „Power User“. Diese Rollen müssen immer unter Berücksichtigung der unternehmensinternen BI Governance identifiziert und besetzt werden, andernfalls kann es rasch zu einem unkontrollierbaren Berichtswildwuchs kommen (eine Übersicht zu den von der QUNIS in Projekten genutzten Software und Technologien finden Sie hier).

 

Ad-hoc Anforderungen effizient umsetzen

Power BI zeigt seine besondere Stärke, wenn es um Ad-hoc-Anforderungen mit einem hohen Bedarf an Visualisierung geht, und dass sowohl in der BI als auch im Big-Data-Umfeld. Es lässt sich damit auch für Ad-hoc Reporting sehr gut verwenden. Seine umfangreichen Datenkonnektoren spielen dabei eine wichtige Rolle. Ebenso sind Standardreporting und Dashboarding mit Power BI gut umsetzbar, aber es existieren leistungsfähigere Alternativen für dieses Spezialszenario – wie beispielsweise die Reporting Services von Microsoft. Ferner fehlt bis jetzt eine umfangreiche Parametrisierbarkeit und das Zusammenspiel der einzelnen Berichte könnte abgestimmter sein. Die heute noch fehlenden Funktionen verhindern jedoch keineswegs die einfache Nutzbarkeit der Software gemäß dem Self-Service-Gedanken.

 

Integration mit den Microsoft Reporting Services

Ein weiterer wichtiger Aspekt von Power BI ist die Integration auf Applikationsebene. Z.B. können Anwender Berichte, die mit den „Microsoft Reporting Services“ erstellt wurden, in den Power BI Services veröffentlichen und genauso funktioniert es auch andersherum. Wurden die Power-BI-Berichte im „Microsoft Report Server“ vormals lediglich als statisches Kachelsymbol dargestellt, so sind sie mittlerweile als Power-BI-Berichtsdatei verteilbar, und auch Dashboard-Elemente finden nun in Reporting-Services-Berichten Platz. Zukünftig soll eine vollständige Integration von Power-BI-Berichten in den Reporting Services möglich sein, womit Power BI als reine On-Premises-Lösung mit vollem Funktionsumfang betrieben werden könnte. Darüber hinaus bietet Power BI noch weitere Integrationsmöglichkeiten, wie zum Beispiel in die Software „BI Office“ von Pyramid Analytics oder in SharePoint, wenngleich hier noch Nachholbedarf besteht. Sehr hilfreich und beliebt ist die Integration in PowerPoint, wodurch Berichte und Dashboards mit nur wenigen Mausklicks und in ihrer gesamten Interaktivität in eine Präsentation eingebunden werden können. Damit zeigt sich, dass Power BI nicht nur im Cloud Umfeld nutzbar ist, sondern auch als On-Premises-Lösung, die schon heute gut mit anderen Applikationen interagiert.

 

Abschließend lässt sich sagen, dass Microsoft mit Power BI ein sehr interessantes Tool am Markt erfolgreich etabliert hat, dass sich durch eine starke Community schnell weiterentwickelt, immer mehr Anforderungen der Nutzer abdeckt und in Folge dessen ein ernstzunehmendes Produkt für Anforderungen in der BI aber auch im Big-Data-Umfeld darstellt. Der vollständige Funktionsumfang steht allerdings nur in der lizenzpflichtigen Pro Version zur Verfügung. Für das Microsoft Portfolio ist Power BI eine moderne Ergänzung, die sich als eigenständiges Self Service BI Tool sowohl in die bestehende Cloud- und On-Premises-BI- als auch Big-Data-Produktpalette des Anbieters integriert.

 

Weitere Blog-Beiträge, die Sie interessieren könnten: