Beiträge mit dem Schlagwort Big Data

QUNIS on Tour – Big Data in Bayern und Kongress der Controller

Erstellt am: Mittwoch, 17. Mai 2017 von Monika Düsterhöft
Zweimal „großer Bahnhof“ in Bayern: Unter dem Motto „Zukunft digital – Big Data“ trafen sich am vergangenen Montag zum einen Unternehmensvertreter und Mitglieder des Zukunftsrats der Bayerischen Wirtschaft in Straubing zum Austausch über die wirtschaftliche Bedeutung von Big Data. Die QUNIS war mit einem Stand vertreten und gab dort Interessenten Einblick in unsere Big-Data-Methodik, Use Cases sowie unser Anwenderbefragung zu Big Data und Advanced Analytics in der Praxis.
Im Mittelpunkt der Konferenz stand die erstmals 2016 präsentierte Studie zu den wirtschaftlichen Potenzialen und rechtlichen Rahmenbedingungen von „Big Data“. Im Auftrag der vbw – Vereinigung der Bayerischen Wirtschaft e. V. hatten die Prognos AG und Professor Dirk Heckmann vom Lehrstuhl für Öffentliches Recht, Sicherheitsrecht und Internetrecht an der Universität Passau, diese Untersuchung für den Zukunftsrat erstellt.
 Die darauf beruhenden Handlungsempfehlungen des Zukunftsrats an Politik, Wirtschaft und Wissenschaft stellte vbw-Präsident Alfred Gaffal den rund 120 anwesenden vbw-Mitgliedern noch einmal kurz vor. Big Data werde als Schlüssel zur Entwicklung innovativer hybrider Geschäftsmodelle entscheidend zum Wachstum der kommenden Jahre beitragen, so die Erwartung des Verbands. Bayern müsse dabei zur europäischen Leitregion für Big Data Technologien und Anwendungen werden.  Jedes Unternehmen sollte sich laut der Handlungsempfehlungen künftig eine Strategie für den Umgang mit Daten – möglichst unter Ausschöpfung der darin liegenden Potenziale im Rahmen von Big-Data-Anwendungen – geben. Sie beinhaltet gleichermaßen die Realisierung wirtschaftlicher Chancen wie eine möglichst rechtssichere Gestaltung des Umgangs mit Daten.

Auf dem vbw-Treffen in Straubing: Gastgeber Erich Sennebogen, Jutta Krogull, Geschäftsführerin der vbw Bezirksgruppe Niederbayern, sowie vbw-Präsident Alfred Gaffal. Foto: vbw

Big Data – wem gehören die Daten?

Auf letzteren Aspekt ging Professor Heckmann in einer Fragerunde näher ein und machte deutlich, dass hier noch viele Fragen beim Umgang mit Daten zu klären sind, um die Nutzung von Big Data zu fördern und zu erleichtern. Dabei gehe es zum einen um das komplexe Thema Datenschutz, zum anderen aber auch um Fragen der Fairness und die juristisch noch ungeklärte Frage, ob Daten vergleichbar zu Sachgegenständen auch als „Eigentum“ betrachten werden können (Wem gehören die Daten?). Unternehmen sollten ihren Umgang mit Daten mit vertrauensbildendenden Maßnahmen flankieren, empfiehlt der Zukunftsrat, indem sie transparent über die geplante Erhebung, Speicherung und Nutzung von Daten informieren. Innerhalb der Grenzen der notwendigen Geheimhaltung bezüglich eigener Geschäftsvorgänge sollte über Big-Data-Zwecke, -Anwendungen und -Schutzmaßnahmen informiert werden. Bei personenbezogenen Daten und insbesondere im Falle einer nicht von vornherein abschließend feststehenden Nutzung der erhobenen Daten ist dies ohnehin erforderlich. Prof. Heckmann erinnerte zudem die Teilnehmer daran, dass im kommenden Jahr mit der „Europäischen Datenschutzverordnung“ höhere Transparenz-Anforderungen bei der Datennutzung auf alle Beteiligten zukämen.

ICV-Kongress über Digitalisierung und die Folgen im Controlling 

Zum anderen zeigte die QUNIS Präsenz auf dem 42. Congress der Controller in München. Wir waren als Aussteller und als ein Sponsor des „Controllerpreis 2017“, der heuer an EDEKA Südwest ging,  stark vertreten. Die Veranstaltung stand heuer unter dem Motto „Agiles Controlling in der digitalen Realität – Umbrüche erfolgreich managen“ . Rund 650 Teilnehmer waren laut dem Veranstalter, dem Internationalen Controller Verein (ICV), zu Europas größter Controlling-Fachtagung an die Isar gekommen.

650 Besucher kamen dieses Jahr zum Kongress der Controller nach München. Die QUNIS war als Aussteller und Sponsor dabei. Foto: QUNIS

Der ICV-Vorsitzende und langjähriger CEO der Hansgrohe SE, Siegfried Gänßlen betonte in seiner Begrüßungsansprache, wie die Digitalisierung für tiefgreifende Veränderungen in den Unternehmen sorge, indem sie nicht nur technologische Innovationen mit sich bringe, sondern auch neue Geschäftsmodelle ermögliche und Märkte dadurch total umkrempele. Auch die Controller seien nun aufgefordert, „alles an sich selbst in Frage zu stellen“, erklärte der ICV-Vorsitzende. Eine zentrale Frage ist dabei,  wie man künftig mit den vielfältigen, oft in Echtzeit entstehenden steuerungsrelevante Daten umgehen könne: „Wer greift wann welche Daten ab? Und: Was ist jetzt die ‚one version of the truth‘?“ Gänßlen sieht es als Aufgabe der Controller dafür zu sorgen, dass Controlling-Skills an das Management vermittelt werden und die Rationalitätssicherung gewährleistet ist.

QUNIS Kongress der Controller

QUNIS testete auf dem Kongress der Controller ein Digital Signage System mit künstlicher Wahrnehmung. Neugierige Kollegen und Besucher ließen nicht lange auf sich warten  🙂   Foto: QUNIS

Unternehmensbeispiele zeigten, dass heute schon verschiedenste Controller-Tätigkeiten automatisiert sind, speziell im Reporting und in der Planung, so Gänßlen. „Wir befinden uns bereits in einer Zeit der Transformation. In der Unternehmenssteuerung vollzieht sich der Paradigmenwechsel: von reaktiv zu proaktiv-prognostizierend.“ Datenbasiert ließen sich quantitativ-statistische Zusammenhänge erkennen und kontinuierlich auf Validität überprüfen. Neue Modelle dienten als Grundlage für erweiterte Szenario-Planungen, zur Qualifizierung von strategischen Optionen sowie zur Bewertung von Business Cases.

Der ICV-Vorsitzende widmete sich den aktuellen und zukünftigen Aufgaben der Controller. „Qualitativ hochwertige IT-Systeme entwickeln sich nicht von selbst: Das betriebswirtschaftliche Design werden Controlling-Experten liefern müssen“, so der ICV-Vorsitzende. „Das Tooling muss in Zusammenarbeit mit Data Scientists erstellt werden. Wir erhalten eine neue Verteilung der Controlling-Aufgaben und ein stark verändertes Controller-Profil.“ Die Datenanalytik erweise sich bereits als Kompetenzfeld von Spezialisten. Data Scientists als Experten seien mit ihren technologischen, mathematischen und analytischen Kompetenzen gefragt.

Das Selbstverständnis des Controllers muss sich ändern

Viele Veröffentlichungen, Studien und Prognosen befassten sich mit dem Thema Digitalisierung und Künstliche Intelligenz. Die einen Szenarien würden neue Chancen für Controller hervorheben, die anderen den massiven Wegfall von Arbeit im Controlling beschreiben, der mit Jobverlusten der Controller einhergehen werde. Der Vorsitzende des Internationalen Controller Vereins (ICV) mahnte, die Controller müssten in den Veränderungsprozess einsteigen. Die bestehende Toolbox, die Fähigkeiten und der Mindset seien neu aufzustellen. Zu den neuen gefragten Fähigkeiten gehörten Kenntnisse in Statistik und Informationstechnologie, aber auch Kommunikationskompetenz sowie ein solides Verständnis des Geschäftsmodells und der Wertschöpfungskette des Unternehmens. „Wir müssen alte Verhaltensmuster über Bord werfen, noch innovativer werden und mehr Start-up Mentalität entwickeln“, fordert Gänßlen von den Controllern.

Die zunehmende Automatisierung schafft nach Ansicht Gänßlens auch Freiräume für Controller; neue Aufgaben und neue Jobs entstünden. „Controller haben durch ihren tiefen Einblick in das Unternehmen und in die Geschäftsmodelle die idealen Voraussetzungen, um höhere Managementpositionen zu übernehmen. Auch der Weg in die Unternehmensspitze ist machbar“, ist der ICV-Vorsitzende gewiss (mehr zum Thema Controlling und Big Data finden Sie auch in unserem Beitrag).
*Mit Material aus der Pressemitteilung des ICV

Controlling und Big Data – Teil 2

Erstellt am: Dienstag, 24. Januar 2017 von Monika Düsterhöft

Big-Data-Vorhaben haben einen experimentellen Charakter und laufen bislang in der Unternehmenspraxis häufig parallel zum IT-Betrieb. Allerdings zeichnet sich ab, dass dies mancherorts nur in der frühen Phase solcher Vorhaben der Falls ist und mittlerweile Unternehmen solche Aktivitäten künftig wieder in enger Abstimmung zwischen IT, Fachbereichen und mit dem Segen des Managements vorantreiben wollen. Die oft komplexen Resultate der Big-Data-Analysen müssen intern nicht nur vermittelbar sein, sondern möglichst in den produktiven Betrieb überführt werden. Man sollte sich also die eigenen Anforderungen, Ressourcen sowie klare „Use Cases“ definiert haben, bevor man umfänglich mit Big Data zu arbeiten beginnt!

Controlling und Finance als Berater im Big-Data-Projekt

Die Anwenderbefragung „Big Data & Advanced Analytics in der Praxis“ der QUNIS, Controller Akademie und der Aquma GmbH zeigt indes, dass viele Unternehmen aber genau noch nach solchen Use Cases für sich suchen. QUNIS legt in der Beratung daher auf diese Phase des Big-Data-Vorhabens besonders großen Wert und nutzt als Teil seiner Big-Data-Methodik beispielsweise eine umfangreiche „Lösungsbibliothek“ aus Fallbeispielen. Diese leisten bei der Diskussion und Identifikation eigener Use Cases gute Hilfe. Oft gibt es in der Unternehmensorganisation schon Ideen und man weiß um eigene Chancen oder Schwachpunkte, die man durch Advanced Analytics angehen möchte. Diese Ideen weiter zu analysieren, zu selektieren, zu strukturieren, zu priorisieren und dann Maßnahmen abzuleiten, ist ein entscheidender Erfolgsfaktor im Big-Data-Projekt. Auch hier können gerade Finance & Controlling mit ihrem breiten Fach- und Unternehmenswissen eine wichtige Rolle spielen.

In der weiteren Diskussion über die Umsetzung von Big-Data-Projekten wird man sich dann über eine unterstützende Datenarchitektur sowie die Nutzung solcher Daten und Analysen im Rahmen einer vorhandenen BI- oder neu zu definierenden Big-Data-Strategie einigen müssen. Will man erste Erfahrungen sammeln, ist es meist effizient und günstiger, wenn Teststellungen über Cloud Services wie „Microsoft Azure“ aufsetzt, statt intern eine separate IT-Umgebung aufzubauen.

Eine integrierte Unternehmensplanung bleibt das Ziel

Big Data und Advanced Analytics können Finance & Controlling ohne Frage dabei helfen, in einem dynamischen Marktumfeld schneller und gezielter zu planen und durch vorausschauende Analysen Risiken und Chancen zu erkennen (Predictive Analytics). Voraussetzung ist aber, dass alle benötigten Informationen und Ergebnisse zeitnah und in hoher Qualität verfügbar sind. Auch wenn man im Projekt häufig mit einzelnen Prozessen und Anforderungen beginnen wird, muss das Ziel daher eine integrierte Unternehmensplanung sein, von der heute die meisten Unternehmen noch weit entfernt sind. Sie Sie ist gekennzeichnet durch eine fachlich und betriebswirtschaftlich korrekte Verknüpfung der Teilpläne bis in die Ergebnisplanung und verzahnt Gewinn- und Verlustrechnung, Bilanz und Cashflow-Rechnung miteinander. Ferner müsste die Planung sich flexibel und über das Jahr immer wieder anpassen lassen und mit weiteren Prozessen wie das Berichtswesen und die Finanzkonsolidierung verknüpft sein.

Controlling und Big Data – Teil 1

Erstellt am: Dienstag, 24. Januar 2017 von Monika Düsterhöft
Der Aufbau einer integrierten Unternehmenssteuerung steht heute vor allem in großen Finanzorganisationen auf der Agenda. Vereinfacht gesagt geht es darum, die für das eigene Geschäftsmodell relevanten Kennzahlen wie die Umsatzrentabilität, Investitionen oder Kapitalkosten mit ihnen vorgelagerten, nicht-finanzielle Werttreibern wie beispielsweise die „Produktqualität“ zu kombinieren. Sind Erstere und das dazugehörige Modell gut definiert, lassen sich daraus Letztere ableiten, um so insgesamt den Fortschritt der einzelnen Werttreiber zu messen und Maßnahmen abzuleiten.

 

Mehr Informationen für die Planung und Forecasts

Dies setzt jedoch voraus, dass auch alle relevanten Daten für Bewertungen und Prognosen zur Verfügung stehen. An diesem Punkt kommen Big Data und Advanced Analytics ins Spiel, da bislang nicht verfügbare oder nicht berücksichtigte Daten über Kunden, Produkte, Ressourcen und Geschäftsprozesse sowie neue Verarbeitungs- und Analysemöglichkeiten Einzug in die Controlling-Prozesse halten – von der strategischen Planung und Budgetierung über das Reporting und die Kostenrechnung bis zum Risikomanagement.

Auch dort, wo eine derartige Steuerung noch nicht existiert oder zu ambitioniert erscheint, ist es auf jeden Fall überlegenswert, Big Data und Advanced Analytics zur Unterstützung des Controllings einzusetzen. Anders als im Reporting können sich Organisation beispielsweise durch eine gute Planung vom Wettbewerb differenzieren. Eine Analyse großer und polystrukturierter Datenmengen hilft beispielsweise Korrelationen und Einflussgrößen besser aufzudecken und die Planung verfeinern. Umgekehrt profitieren auch Big-Data-Vorhaben außerhalb des Finanzbereichs von der guten Verfügbarkeit von Finanzdaten bzw. werden durch diese erst machbar.

Big Data und Controlling

Abbildung: Die klassischen Unternehmensbereiche für Business Intelligence wie Controlling/Finance, Vertrieb und Marketing stehen auch bei der Big-Data-Diskussion aktuell im Mittelpunkt des Anwenderinteresses. Zugleich belegt aber die breite Verteilung der Anwendungsfelder, dass die Nutzung von Big Data überall in der Organisation von Nutzen sein kann, n= 33 (Mehrfachnennungen möglich).

Advanced Analytics zur Risikoanalyse

Angesichts des steigenden Steuerungsbedarfs und der skizzierten Vorteile überrascht es daher wenig, dass in der öffentlichen Diskussion über den geschäftlichen Nutzen von Big Data Controlling & Finance als wichtige Treiber und Nutznießer gelten. Dies bestätigt auch die Anwenderbefragung „Big Data & Advanced Analytics in der Praxis“ der QUNIS GmbH, der Controller Akademie und der Aquma GmbH. Teilnehmer waren 97 mittelständische und Großunternehmen aus dem deutschsprachigen Raum, bei einer breiten Branchenverteilung. Danach sehen 60 Prozent der Befragten interessante Anwendungsfelder im Controlling & Finance (siehe Abbildung). Ein Beispiel ist ein automatisierter Forecast auf der Basis von Markttendenzen oder die schon erwähnte wertreiberasierte Planung anhand aktueller Daten zum Wachstum, zur Branche und der Kundenumsätze. Insbesondere für Banken und Versicherer ist zudem das Risikomanagement ein wichtiges Anwendungsfeld. Neben der Identifikation von Risikofaktoren können Big-Data-Analysen beispielsweise bei der Betrugserkennung oder bei Compliance-bezogenen Auswertungen helfen.

Lesen Sie weiter im zweiten Teil des Beitrags zu Controlling und Big Data