Beiträge mit dem Schlagwort Big Data

Trends bei Nutzung von Big Data

Erstellt am: Dienstag, 6. März 2018 von Monika Düsterhöft

Nach Einschätzung der Marktforscher von IDC wird der weltweite Umsatz mit Software, Hardware und Services für Big Data und Big Data Analytics in den kommenden zwei Jahren auf 203 Milliarden US-Dollar steigen. Das jährlich zu den bereits vorhandenen Datenbergen hinzukommende Datenvolumen könnte laut der Auguren im Jahr 2025 bereits bei 180 Zetabyte liegen. Gewaltige Datenmengen und viele Chancen für Unternehmen, neue oder detailliertere Informationen zu extrahieren und für die Unternehmens- und Prozesssteuerung, Planung oder Produktentwicklung einzusetzen.

Prescriptive Analytics

Unter den vielen Aspekten, die im Zusammenhang mit der Nutzung von Big Data und Advanced Analytics diskutiert werden, finden sich einige Entwicklungen, die laut Marktbeobachtern in den kommenden zwölf Monaten besondere öffentliche Aufmerksamkeit erfahren werden.
So wird erwartet, dass das Interesse an Prescriptive Analytics steigt. Es vereint Verfahren des Machine Learning, Simulationen und mathematische Berechnungen, um bei einer bestimmten Fragestellung die optimale Lösung oder das beste Ergebnis unter verschiedenen zur Auswahl stehenden Möglichkeiten zu ermitteln. Praktisch werden also beispielsweise kontinuierlich und automatisch neue Daten verarbeitet, um die Genauigkeit von Vorhersagen zu erhöhen und bessere datengetriebene Entscheidungsoptionen zu bieten. Prescriptive Analytics könnte so neben Cognitive Computing den Mehrwert bei der Analyse von Big Data künftig erheblich steigern helfen.

ECM und Big Data

Big Data ist ein Sammelbegriff, der in der Praxis sowohl vorhandenen Daten, etwa aus einem Data Warehouse oder ERP-System, als auch neue Datenquellen einbezieht. Diese können dabei durchaus auch innerhalb der eigenen Unternehmensgrenzen liegen. So wird für 2018 erwartet, dass sich Organisationen mehr für historische Daten und Dokumente interessieren werden, die bislang nicht in einer digitalen Form vorliegen. In diesen können wichtige Informationen liegen, die zum Beispiel für Voraussagen hilfreich sein können. Damit zeichnet sich hier eine Entwicklung ab, die wir auch bei QUNIS sehen, nämlich der Annäherung und Kombination von Enterprise Content Management und Analyseumgebungen.

Datenqualität statt Datenquantität

Angesichts der wachsenden Datenberge ist es trotz sinkender Hardwarepreise, Cloud und Konzepten wie dem Data Lake auf Dauer nicht wirtschaftlich, schlicht alle erreichbaren Daten zu speichern. Unternehmen müssen sich daher in den kommenden Monaten strategisch damit beschäftigen, auf welche Datensätze sie es besonders abgesehen haben bzw. welche ihnen Ansätze für bessere Analysen bieten können. Ebenso wird es um Wege zur Verbesserung der Datenqualität gehen, denn Datensätze können irrelevant, ungenau oder gar beschädigt sein. Qualität statt Quantität, heißt also die Parole für 2018.

Machine Learing hilft beim Datenschutz

Herzstück einer Big-Data-Analyse sind Verfahren der Künstlichen Intelligenz. Diese müssen in 2018 verstärkt für Auswertungen im Bereich der Datensicherung und Datensicherheit zum Einsatz kommen, da auf diesem Anwendungsgebiet laut Marktbeobachtern Nachholbedarf herrscht. So werden Maschinen beispielsweise schon bald in der Lage sein, mit Hilfe von Machine Learning menschliches Verhalten „vorherzusagen“ und automatisiert „unlabeled data“ zu verwenden. Dadurch wird sich Künstliche Intelligenz zu einem zentralen Instrument für Datenschutz und Abwehr unerlaubter Zugriff entwickeln.

Neue Rollen und viele Stellenangebote

Aber nicht nur die Vielfalt und Nutzungsformen von Big Data werden sich in der nächsten Zeit weiterentwickeln, sondern auch die Menschen, die damit arbeiten. So entstehen neben dem viel zitierten Data Scientist weitere Rollen in den Organisationen, welche die Erfassung, Auswertung und Operationalisierung von Big Data überhaupt erst strukturiert möglich machen. Auch die QUNIS hat hierzu bereits im Rahmen ihrer Big Data Methodik ein modernes Rollenmodell entwickelt, das detailliert die Aufgaben und Kombinationen diskutieren und definieren hilft. Zugleich wächst im Markt die Sorge, dass sich nicht ausreichend Spezialisten für diese oft sehr anspruchsvollen Aufgaben und Rollen rund um Big Data finden lassen. So schätz beispielsweise IBM, dass allein in den USA das Stellenangebot für Big-Data-Experten im weitesten Sinne von 364.000 offenen Stellen in 2018 auf 2,72 Millionen bis 2020 ansteigen wird.

Keine Industrie 4.0 ohne Big Data und Künstliche Intelligenz

Erstellt am: Mittwoch, 14. Februar 2018 von Monika Düsterhöft

Mit der zunehmenden Praxis wächst auch die Zahl der Umfragen zu Industrie 4.0. So hat sich jetzt die Siemens Financial Services bei Herstellern und Beratungshäuser aus dem Bereich der Produktion und Wartung in elf Ländern umgehört, wo der Schuh drückt. Heraus kamen sechs Themenfelder, die Hersteller nach eigenen Aussagen aktuell angehen müssen:

  • Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0
  • Zugang zu Finanzierungen, die den erforderlichen Investitionszeitraum berücksichtigen
  • Aufbau einer Kooperationskultur, die notwendig ist, um gemeinsam am Erfolg in einer vernetzten Industrie-4.0-Welt zu arbeiten, ob im eigenen Unternehmen, in der Lieferkette oder branchenübergreifend (mehr zur Unternehmenskultur und Industrie 4.0 finden Sie hier)
  • Überwindung von Risiken bezüglich der Daten- und Internetsicherheit in einer Welt, in der sich große Mengen sensibler Daten durch das Internet bewegen
  • Umfassender Zugang zu einer ausreichenden Zahl an realen Beispielen für erfolgreiche digitale Transformation aus allen Fertigungssektoren
  • Spezialisierte strategische Managementkompetenzen zur Erarbeitung eines klaren Stufenplans, um Industrie 4.0 zu erreichen. Spezialisierte strategische Führungsqualität zur Entwicklung eines klaren, gestaffelten Plans, um Industrie 4.0 umzusetzen.

Laut der Autoren zeigen diese Aspekte, dass es mittlerweile nicht mehr darum geht, grundsätzlich die Notwendigkeit zur Digitalisierung und Automatisierung zu diskutieren. Vielmehr stehen mittlerweile praktische Fragen im Mittelpunkt, wie Organisation den Weg zur Industrie 4.0 schrittweise und mit Augenmaß gehen können – einschließlich laufender Qualitätskontrollen und RoI-Maßnahmen.

Es fehlt an Expertise für digitale Produkte und Künstliche Intelligenz

Von allen Themenfeldern wurde die „Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0“ als größte Herausforderung benannt. Es fehlt bis dato digitales Produktionswissen, welches es operativen Mitarbeitern ermöglicht, Maschinen- und Leistungsdaten auf ihren portablen Dashboards zu interpretieren und entsprechende Maßnahmen zu ergreifen. Ferner müssen „digitaler Wartungskompetenzen“ entstehen, wie es die Studienautoren nennen, also, dass Techniker auch das Know-how haben, um komplexe digitalisierte Betriebssysteme und Geräte instandzuhalten. Und schließlich bedarf es der Expertise für operative und strategische Analysen. Gemeint ist damit, dass man die Auswertung großer Datenmengen, die sich durch die enge Vernetzung von Maschinen, Anwendungen und Menschen künftig rasant erhöhen (Big Data) in den Griff bekommt. Diese Unmengen an Daten – einschließlich Produktionsdaten, Lieferkettendaten, Marktdaten und finanziellen Daten – erfassen und analysieren zu können, ist entscheidend um die eigene Wettbewerbsfähigkeit künftig zu erhalten bzw. zu verbessern.

Datenmanagement auf Industrie 4.0 vorbereiten

Voraussetzung dafür ist, dass Unternehmen zunächst ihr bisheriges Datenmanagement und ihre Dateninfrastruktur bewerten, ob und wie sich diese für die Erfassung und Analyse von Big Data weiterentwickeln lassen – ohne bisherige Investitionen deshalb gleich aufgeben zu müssen. Ebenso gehört zu Vorarbeiten eine Strategiediskussion sowie Auswahl von Use Cases. Schauen Sie sich einmal unsere Methodik für Big-Data-Umgebungen sowie unser Data Lake Konzept an, die unsere langjährige Projekterfahrung und Expertise auch in den neuen Technologien und Verfahren wie die der Künstlichen Intelligenz widerspiegeln!

Die Folgen von Industrie 4.0 für die Unternehmenskultur

Erstellt am: Montag, 29. Januar 2018 von Monika Düsterhöft

Es wird nicht genügen, wenn Unternehmen allein durch den Einsatz entsprechender Technologien versuchen, sich den neuen Anforderungen und Möglichkeiten einer Industrie 4.0 zu stellen. Vielmehr müssen sie den damit verbundenen gesellschaftlichen Wandel sehen und ihre Mitarbeiter darauf vorbereiten. So eines der Ergebnisse der Umfrage der Wirtschaftsprüfungsgesellschaft Deloitte „The Fourth Industrial Revolution is Here – Are You Ready?“. Laut Unternehmen wurden über 1600 C-Level-Führungskräfte aus 19 Ländern und zehn verschiedenen Branchen befragt, deren Unternehmen mehr als eine Milliarde US-Dollar Jahresumsatz erwirtschaften – darunter auch 100 Führungskräfte deutscher Unternehmen.
Geht es um die gesellschaftliche Breitenwirkung von Industrie 4.0, glaubt laut Studie eine große Mehrheit der Führungskräfte (87 Prozent), dass diese positiv für die künftige Entwicklung der Gesellschaft sei und „zu mehr Gerechtigkeit und Stabilität führen wird“. Verantwortlich dafür seien aber weniger Privatunternehmen, als zwischenstaatliche Kooperationen und Allianzen. Einen nennenswerten eigenen Beitrag zu dieser angeblich positiven Entwicklung sehen entsprechend nur ein Viertel der globalen Leader, in Deutschland sogar nur sechs Prozent der befragten Führungskräfte.

Keine Antwort auf die drohende Disruption

Skeptisch zeigen sich die Manager auch, ob ihr eigenes Unternehmen die „Disruption“ durch Industrie 4.0 überhaupt sicher überstehen wird. Nur 14 Prozent sind aktuell davon überzeugt, dass ihre Organisation vorbereit ist, das Potenzial von Industrie 4.0 in vollem Umfang nutzen zu können. Strategisch setzt die Mehrheit der Führungskräfte dabei den Fokus auf die Entwicklung neuer Produkte und Services sowie die Steigerung der Produktivität und Wachstum. Damit folgen sie eher einer traditionellen Ausrichtung, statt die Möglichkeiten von Industrie 4.0 zu nutzen, die durch Weiterentwicklung der Mitarbeiter oder Disruption im Wettbewerb entstehen können, so die Autoren der Studie. International sehen 40 Prozent der CXOs die Entstehung neuer Geschäfts- und Vertriebsmodelle im Rahmen von Industrie 4.0 als große strategische Herausforderung, hierzulande stimmen dem nur 26 Prozent der Befragten zu. Auch die Frage, wie wichtig es für Unternehmensführer ist, sich auf Innovation zu fokussieren, beantworten nur 29 Prozent der deutschen Führungskräfte positiv, während es international 40 Prozent sind.

Mitarbeiterschulung und Change Management

Diese zurückhaltende Sicht auf Industrie 4.0 spiegelt sich zudem in den Antworten wieder, wie denn derzeit die eigenen Mitarbeiter durch Weiterbildung und Change-Management auf den kommenden Wandel vorbereitet werden. Dies scheint umso nötiger, glaubt doch nur ein Viertel der befragten C-Level-Führungskräfte, dass ihr Unternehmen bereits über Mitarbeiter mit der benötigten Qualifikation sowie gut aufgestellte Teams verfügt. 86 Prozent aller internationalen als auch lokaler Manager wollen sich daher für die Weiterentwicklung ihrer Mitarbeiter für die neuen Anforderungen einsetzen. Doch die Autoren hegen Zweifel, ob diesen guten Vorsätzen auch Taten folgen werden, denn es gehe ja um nicht weniger als die Schaffung einer neuen Arbeitskultur, die Weiterbildung und die Gewinnung neuer Talente in den Mittelpunkt stellt. Bislang stehe aber zum Beispiel das HR-Thema weit hinten auf der CXO-Agenda, so Deloitte.

Big Data Anwendungsfälle PayPal und ProSiebenSat1

Erstellt am: Mittwoch, 24. Januar 2018 von Monika Düsterhöft

Auch wenn heute Big Data in aller Munde ist, so stehen doch die Unternehmen mehrheitlich immer noch am Anfang mit der Umsetzung. Gerade zu Beginn einer Big-Data-Initiative fällt es schwer, die geeigneten Use Cases zu finden beziehungsweise vorhandene Ideen weiter auszuarbeiten und für ein Proof-of-Concept zu priorisieren. Wir empfehlen daher, sich zunächst in einem individuellen Workshop über die eigenen Anforderungen,  den Markt und Technologien bis hin zur eine Road Map klar zu werden. Im Rahmen dieser Vorarbeiten erläutern wir unter anderem Anwendungsbeispiele aus der jeweiligen Branche oder Fachbereich, die von Kunden oder aus dem Markt stammen. Die QUNIS hat hierfür als Besonderheit im Markt eine „Lösungsbibliothek“ geschaffen. Sie vereint und strukturiert aktuell weit über 100 im Markt veröffentlichte Anwendungsbeispiele für die Nutzung von Big Data.

Ein besonders spannendes Anwendungsgebiet für Advanced Analytics ist beispielsweise das Marketing. Die in der Branche viel zitierte 360°-Sicht auf den Kunden bildet künftig die Grundlage dafür, welches Produkt und welche Dienstleistung er über welchen der vielen Kanäle zu welchen Konditionen angeboten bekommt. Je präziser daher eine Segmentierung von Kunden und die Prognose ihres Verhaltens möglich ist, desto höher sind Kontakt- und Antwortraten und damit auch Abschlussquoten und Umsatz, desto höher die Kundenzufriedenheit und Loyalität. Nachfolgend zwei Beispiele:

PayPal – Kunden besser verstehen und binden – Service optimieren durch Text Analytics

PayPal hat über 143 Millionen aktive Kunden und wickelt täglich über 8 Millionen Zahlungen ab. Zahlreiche Kunden äußern sich über Kundenumfragen, E-Mail, Feedback-Formulare im Web, Twitter zu den Dienstleistungen von PayPal, unter anderem darüber, welche technischen Probleme sie haben, was sie mögen, was sie stört und wie man den Service verbessern könnte. Wegen der enorm großen Menge an Feedback, wäre es sehr zeit- und kostenaufwändig, alles textuelle Feedback einzeln zu lesen und zu berücksichtigen. Die automatisierte Analyse des Kundenfeedbacks aus über 60 Ländern und in über 30 Sprachen ermöglicht es PayPal nun, wichtige Probleme und Themen sowie ihre Häufigkeit und Kritikalität automatisch und fast in Echtzeit zu erkennen, zu priorisieren und zu beheben.

ProSiebenSat.1 – Fakten mit Big Data: Was bringen TV-Spots für E-Commerce?

Die ProSiebenSat.1 Media AG vermarktet einerseits klassische TV-Werbezeiten und beteiligt sich andererseits an zahlreiche E-Commerce-Unternehmen. Im Rahmen der Beteiligung stellt ProSieben-Sat.1 u. a. Werbezeiten für die Bewerbung der E-Commerce-Angebote zur Verfügung. Es ist daher von hohem Interesse für ProSiebenSat.1, systematisch ermitteln zu können, welchen konkreten Beitrag die TV-Werbung zur Wertschöpfung des beworbenen E-Commerce-Unternehmens leistet. Wie viele Visitors besuchen genau deshalb die E-Commerce-Website, weil sie die TV-Werbung gesehen haben? Und welchen Umsatz bringen diese Visitors, die nachweislich ursächlich wegen der TV-Werbung auf die Website gekommen sind, in einem bestimmten Zeitraum? Durch den Big Data-Ansatz konnte ein Verfahren entwickelt werden, um den TV-Einfluss auf den Website-Traffic zu messen.

Mehr zu Big Data und der QUNIS-Methodik finden Sie hier

Die Unternehmensplanung verändert sich

Erstellt am: Freitag, 17. November 2017 von Monika Düsterhöft

Schon lange wird von Experten eine integrierte Planung gefordert, doch bleibt es in der Praxis häufig noch bei den alten Abläufen und Vorgehensweisen, die seit vielen Jahren eher kosmetisch angepasst werden. Es dominieren weiterhin Insellösungen, während schätzungsweise erst ein Drittel aller Unternehmen hierzulande schon moderne Planungslösungen im Einsatz hat. Dieser Nachholbedarf bremst auch die Einführung neuer Verfahren und Techniken wie Advanced Analytics. Zu viele Hausaufgaben sind im Zusammenhang mit der Planung noch zu erledigen. So etwa die Bereinigung und Harmonisierung von Datenmodellen. Auch scheuen Unternehmen die Kosten für den Umbau in Richtung integrierte Planung, da es sich um keine kurzfristigen und billigen Vorhaben handelt.

Planungsumgebungen, Simulationen und Predictive Analytics

Dennoch ist die Entwicklung nicht stehengeblieben. Vielmehr zeigen sich deutlich drei Entwicklungen bei der Modernisierung der Planungsumgebung. So existieren in manchen Unternehmen mittlerweile große Planungsplattformen mit neuen Tools und leistungsstarken Datenbanken, über die verschiedene Planungsprozesse integriert und automatisiert werden. Ferner werden häufiger Szenarien modelliert und simuliert. Dadurch wird das bisher dominierende Einsammeln von Plandaten (Bottom up) zurückgedrängt zugunsten einer Top-down-Planung.
Und schließlich kommen auch Lösungen für Advanced Analytics mittlerweile zum Einsatz. Mit ihnen lassen sich laut Finanzexperten schon heute besonders für kurzfristige Prognosen (Predictive Analytics) und für operative Größen gute Ergebnisse erzielen. Aggregierte Größen wie zum Beispiel der EBIT ließen sich hingegen bislang noch nicht so gut berechnen. Doch dies sei nur eine Frage der Zeit. Auch die wachsenden Datenmengen seien in diesem Zusammenhang weniger das Problem, sondern vielmehr die Verfügbarkeit und Qualität der Daten. Aktuell haben 20 Prozent aller Unternehmen eine Planungsumgebung mit automatisierten Analysen, so eine Schätzung.

Weitere Beiträge zum Thema Planung:

Die Digitalisierung wird oft der IT überlassen

Erstellt am: Dienstag, 7. November 2017 von Monika Düsterhöft

Nur in 42 Prozent aller Unternehmen werden Digitalisierungsprojekte und digitale Innovationen aktuell vom Vorstand oder der Geschäftsleitung angestoßen. Stattdessen kommen die Initiativen in 86 Prozent der Unternehmen aus der IT-Abteilung. Dies ergab jetzt eine Umfrage von Bitkom Research im Auftrag von Tata Consultancy Services (TCS) unter 905 Unternehmen mit 100 oder mehr Mitarbeitern in Deutschland. Konkret seien die Interviews mit Führungskräften geführt worden, die in ihrem Unternehmen für das Thema Digitalisierung verantwortlich sind. In einer vergleichbaren Umfrage aus dem Vorjahr hatten noch 51 Prozent der Befragten das Management als Treiber der Digitalisierung gesehen und 78 Prozent die IT.

Grundsätzlich seien laut einer Pressemeldung jeweils rund drei Viertel der Befragten interessiert und aufgeschlossen gegenüber Cloud Computing (77 Prozent) und Big Data Analytics (72 Prozent), jeder Zweite gegenüber dem Internet der Dinge (46 Prozent). Rund jedes dritte Unternehmen interessiert sich für Technologien wie Virtual und Augmented Reality (37 Prozent), 3D-Druck (36 Prozent), Künstliche Intelligenz (35 Prozent) oder Robotik (29 Prozent).

Bedarf an Skills für Digitalisierung

Mit dem Wandel sehen die befragten Unternehmen auch einen steigenden Bedarf an zusätzlich und neuen Mitarbeitern bzw. an Beratungsdienstleistungen. So planen fünf Prozent der Unternehmen Stellen für Data Scientists und Application Developer, externe Dienstleister wollen dazu vier bzw. neun Prozent nutzen. Die größte Nachfrage besteht allerdings nach IT-Sicherheitsexperten. Eine solche Stelle im Unternehmen wollen 15 Prozent besetzen, 20 Prozent wollen das entsprechende Know-how extern beziehen.

Mehr zum Thema Digitalisierung finden Sie hier:

Der Chief Data Officer – Eine neue Rolle etabliert sich

Erstellt am: Mittwoch, 27. September 2017 von Monika Düsterhöft

Die digitale Transformation von Unternehmen ist eng verknüpft mit der Organisation und Weiterentwicklung des bisherigen Information Managements. Dies führt unter anderem zur Entwicklung neuer Rollen, denen eine strategische Aufgabe bei der Umsetzung zukommt. Damit Daten tatsächlich operativ nutzbar werden, müssen sie auch technisch verfügbar, korrekt und standardisiert (Governance) vorliegen. Um diese Vorgaben umzusetzen und zu überwachen, haben manche Organisationen damit begonnen, die Rolle eines „Chief Data Officers“ (CDO) zu definieren und zu besetzen. Nicht zu verwechseln mit der Rolle eines „Chief Digital Officers“ (ebenfalls CDO abgekürzt) definiert der Datenverantwortliche, wie Daten künftig erfasst, verwaltet, geschützt und letztlich zu Geld gemacht werden sollen. Ob dies in der Praxis bereits gelingt, hat nun die vom US-Anbieter Experian in Auftrag gegebene Umfrage „The Chief Data Officer: Powering business opportunities with data“ näher beleuchtet. 200 CIOs und 50 CDOs aus den USA nahmen laut der Autoren teil. Sie stammen aus Unternehmen mit mehr als 500 Mitarbeitern und aus diversen Branchen. Nachfolgend einige Ergebnisse aus dieser Untersuchung.

Big Data verstärkt den Bedarf an Chief Data Officer

Häufigstes Motiv für die Schaffung einer dedizierten CDO-Rolle ist danach der Wunsch, durch sein Wirken die Nutzung von Big Data profitabel zu machen sowie einen datengetriebenen Ansatz zu finden, der strategische Vorteile schafft, bei gleichzeitig überschaubaren Projektrisiken. Selbst zwei Drittel aller CIOs, in deren Unternehmen bislang keine entsprechende Position existiert, erklärten, dass sie sich mit den oben erwähnten Themen im Datenmanagement überfordert fühlten und daher einen Chief Data Officer begrüßen würden.

Doch Anspruch und Wirklichkeit klaffen in der Praxis offenbar noch häufig auseinander – was angesichts der noch „jungen“ Rolle nicht verwundert. So erklärte fast jeder zweite CDO, er habe seine Positionen angetreten, ohne dass der Aufgabenbereich und die Verantwortlichkeiten zuvor geklärt worden seien. Zwar wären im weiteren Verlauf der Karriere bei etwa 40 Prozent der Befragten die ebenfalls knappen Ressourcen und Budgets etwas aufgestockt und auch der bis dato meist beschränkte Zugriff auf die Datenhaltungen gelockert worden. Viele würden sich aber bis heute nicht mit der innovativen Nutzung von Daten beschäftigen, sondern müssten vor allem Projekte zur Kostenersparnis treiben.

Die Gründe für diesen Widerspruch führen die Autoren nicht allein auf unklare Rollendefinitionen zurück, sondern auch auf die Tatsache, dass in vielen Organisationen das Datenmanagement grundsätzlich noch erhebliche Defizite aufweise. So sehen laut Umfrage insbesondere die CIOs im fehlenden Datenzugriff das häufigste Hindernis auf dem Weg zu einer stärker datengetriebenen Organisation. Die von den CDOs beklagten schmalen Budgets würden Investitionen in entsprechende Dateninfrastrukturen erschweren, und es fehle nach Ansicht vieler Befragter an Skills in den Unternehmen. Daran könnte auch ein Chief Data Officer so schnell nichts ändern (Hilfe bei der Schaffung einer gemeinsamen, performanten Datenarchitektur für Big Data und Data-Warehouse-Systemen bietet die praxiserprobte QUNIS-Methodik).

Chief Data Officer – eher operativ oder strategisch tätig?

Hinzu kommt, dass sich der CDO in der Praxis offenbar häufig in einer schwierigen Position zwischen IT und Fachbereich befindet. Während die Business User immer lauter über den fehlenden Datenzugang klagten, müsse der CDO oft erst bei der IT anfragen, um hier Änderungen zu bewirken, so die Autoren. Diese könne oft Stunden oder gar Tage dauern. Zudem werde sich der Druck auf den Chief Data Officer in den kommenden zwei Jahren weiter verstärken, da Themen wie Datenschutz, die rasante technologische Entwicklung und steigende Kundenerwartungen viel Arbeit machten. QUNIS kann diese sehr operativ beschriebene Arbeitsweise eines CDOs aus ersten Kundenprojekten in Deutschland nicht bestätigen. Vielmehr stehen nach unserer Erfahrung eindeutig strategische Aufgaben im Vordergrund.

Konkurrenz zwischen Chief Data Officer und CIO

Viele CDOs beklagten in der Umfrage zudem, dass sie nicht zum C-Level gehörten, sondern häufig nur ein Junior Partner für das Top-Management seien. Auch bei den CIOs scheint diese Einstufung immer mehr zu überwiegen. So sahen vor zwei Jahren in einer vergleichbaren Umfrage von Experian  noch 16 Prozent mehr von ihnen den CDO als gleichrangigen Kollegen an als es jetzt der Fall ist. Ob diese Zurückstufung eher strategische, organisatorische oder vielleicht finanzielle Gründe hat, vermochten die Autoren nicht sicher zu sagen. Bei der QUNIS können wir diese Konstellation innerhalb der Hierarchie bislang nicht bestätigen. Vielmehr genießen die uns bekannten CDOs ein hohes Ansehen im Management und übernehmen strategische Aufgaben, die als sehr sinnvoll für die Organisation betrachtet werden. Möglich aber, dass in manchen der befragten Unternehmen eine Konkurrenzsituation zwischen CIO und CDO dahinter steckt. So bezeichneten über 40 Prozent der CDOs ihr Verhältnis zum CIO als „distanziert“ oder „nicht existent“. Umgekehrt bewerteten über 60 Prozent der CIOs ihre Beziehung zum Chief Data Officer als „positiv“, also in ihrem Sinne. Aktuell berichten etwa 40 Prozent der CDOs an den CEO, über die Hälfte hingegen an die IT oder Leiter von Geschäftsbereichen.

 

 

 

Der Chief Data Officer – Eine neue Rolle mit noch vielen Fragezeichen

Erstellt am: Montag, 11. September 2017 von Monika Düsterhöft

Die digitale Transformation von Unternehmen ist eng verknüpft mit der Organisation und Weiterentwicklung des bisherigen Information Managements. Damit Daten tatsächlich operativ nutzbar werden, müssen sie auch technisch verfügbar, korrekt und standardisiert (Governance) vorliegen. Um diese Vorgaben umzusetzen und zu überwachen, haben manche Organisationen damit begonnen, die Rolle eines „Chief Data Officers“ (CDO) zu definieren und zu besetzen. Dieser verantwortet, wie Daten künftig erfasst, verwaltet, geschützt und letztlich zu Geld gemacht werden sollen.

Soweit der hohe Anspruch an diese Rolle. Wie sich die Praxis bislang darstellt hat nun die vom US-Anbieter Experian in Auftrag gegebene Umfrage „The Chief Data Officer: Powering business opportunities with data“ näher beleuchtet. 200 CIOs und 50 CDOs aus den USA nahmen laut der Autoren teil. Sie stammen aus Unternehmen mit mehr als 500 Mitarbeitern und aus diversen Branchen. Nachfolgend einige Ergebnisse aus dieser Untersuchung.

Die Arbeit des Chief Data Officer

Häufigstes Motiv für die Schaffung einer dedizierten CDO-Rolle ist danach der Wunsch, durch sein Wirken die Nutzung von Big Data profitabel zu machen sowie einen datengetriebenen Ansatz zu finden, der strategische Vorteile schafft, bei gleichzeitig überschaubaren Projektrisiken. Selbst zwei Drittel aller CIOs, in deren Unternehmen bislang keine entsprechende Position existiert, erklärten, dass sie sich mit den oben erwähnten Themen im Datenmanagement überfordert fühlten und daher einen CDO begrüßen würden.
Doch Anspruch und Wirklichkeit klaffen in der Praxis offenbar noch häufig auseinander. So erklärte fast jeder zweite CDO, er habe seine Positionen angetreten, ohne dass der Aufgabenbereich und die Verantwortlichkeiten zuvor geklärt worden seien. Zwar wären im weiteren Verlauf der Karriere bei etwa 40 Prozent der Befragten die ebenfalls knappen Ressourcen und Budgets etwas aufgestockt und auch der bis dato meist beschränkte Zugriff auf die Datenhaltungen gelockert worden. Viele würden sich aber bis heute nicht mit der innovativen Nutzung von Daten beschäftigen, sondern müssten vor allem Projekte zur Kostenersparnis treiben.

Anspruch und Wirklichkeit im Datenmanagement

Die Gründe für diesen Widerspruch seien laut der Autoren nicht allein auf unklare Rollendefinitionen zurückzuführen, sondern vielmehr auf die Tatsache, dass in vielen Organisationen das Datenmanagement grundsätzlich noch erhebliche Defizite aufweise. So sehen laut Umfrage insbesondere die CIOs im fehlenden Datenzugriff das häufigste Hindernis auf dem Weg zu einer stärker datengetriebenen Organisation. Die von den CDOs beklagten schmalen Budgets würden Investitionen in entsprechende Dateninfrastrukturen erschweren, und es fehle nach Ansicht vieler Befragter an Skills in den Unternehmen. Daran könnte auch ein CDOs so schnell nichts ändern. Hinzu kommt, dass sich der CDO in der Praxis häufig in einer schwierigen Position zwischen IT und Fachbereich befindet. Während die Business User immer lauter über den fehlenden Datenzugang klagten, müsse der CDO oft erst bei der IT anfragen, um hier Änderungen zu bewirken. Diese könne oft Stunden oder gar Tage dauern. Zudem werde sich der Druck auf den CDO in den kommenden zwei Jahren weiter verstärken, da Themen wie Datenschutz, die rasante technologische Entwicklung und steigende Kundenerwartungen viel Arbeit machten.

Gerangel im C-Level

Trotz seiner wichtigen strategischen Rolle, scheint sich der CDO innerhalb der Hackordnung bislang nicht entsprechend zu etablieren. Viele CDOs beklagten in der Umfrage, dass sie nicht auf dem C-Level, sondern häufig nur ein Junior Partner für das Top-Management seien. Auch bei den CIOs scheint sich diese Bewertung durchzusetzen. So hatten in einer vergleichbaren Umfrage von Experian vor zwei Jahren noch 16 Prozent mehr von ihnen den CDO als einen gleichrangigen Kollegen gesehen. Ob diese Zurückstufung eher strategische, organisatorische oder vielleicht finanzielle Gründe hat, vermochten die Autoren nicht sicher zu sagen. Möglich auch, dass hier eine Konkurrenzsituation zwischen CIO und CDO besteht. So bezeichneten über 40 Prozent der CDOs ihr Verhältnis zum CIO als „distanziert“ oder „nicht existent“. Umgekehrt bewerteten über 60 Prozent der CIOs ihre Beziehung zum CDO als „positiv“. Aktuell berichten etwa 40 Prozent der CDOs an den CEO, über die Hälfte hingegen an die IT oder Leiter von Geschäftsbereichen.

 

 

 

Megatrend Digitalisierung

Erstellt am: Freitag, 1. September 2017 von Monika Düsterhöft

Großer Bahnhof auf dem diesjährigen Kundentag „QUNIS Day“ in Neubeuern. Mit neuem Besucherrekord und aufgeräumter Stimmung ging es am Morgen in die Konferenz, in deren Mittelpunkt Best Practices für Business Intelligence, Big Data und Advanced Analytics sowie der fachliche Austausch stehen. Unter dem Motto „Innovation Now“ erläutern Senior Analysten sowie unsere Kunden Henkel und Südpack  wie sich die allgegenwärtige digitale Transformation der Unternehmen aktuell darstellt.

QUNIS Day 2017

Großes Anwendertreffen zu Business Intelligence, Big Data und Advanced Analytics auf dem QUNIS Day 2017. Quelle: QUNIS

Geschäftsführer Hermann Hebben konnte zum Auftakt das erfolgreichste Geschäftsjahr seit Firmengründung 2013 verkünden. Mittlerweile werden über 150 Unternehmen im Mittelstand und Konzern betreut und auch die Belegschaft sei in den letzten zwölf Monaten um 73% gewachsen. Auch wirtschaftlich stehe das Beratungshaus sehr gut dar. Hebben betonte aber, dass man weiterhin auf die Kernkompetenz setzen werde, statt neue Beratungsfelder um jeden Preis anzugehen: „G´scheid oder gar ned!“.

Data Warehouse schneller und performant aufbauen

In den letzten zwölf Monaten wurden viele erfolgreiche Projekte umgesetzt. Die Strategieberatung bleibt dabei von zentraler Bedeutung, um ein Fundament für erfolgreiche Initiativen zu legen. Mit Blick auf die Umsetzung von Anforderungen hat QUNIS sein im Markt einmaliges „Data Warehouse Framework“ weiterentwickelt und in vielen Data-Warehouse-Projekten eingesetzt. Ferner wird auf dem QUNIS Day mit der „QUNIS Automation Engine“ erstmals im Plenum eine neue Methode und Technik vorgestellt, mit der sich die Beladung eines Data-Warehouse-“Core“ automatisieren lässt. Gut entwickle sich laut Hebben auch die Schwesterfirma GAPTEQ, die sich nach ihrem Start im September 2016 mittlerweile gut im Markt etabliert hat.

Digitalisierung verändert das Datenmanagement und Datenanalyse

All diese Entwicklungen erfolgen wie erwähnt in einem Marktumfeld, das sich für Unternehmen durch die Digitalisierung aktuell radikal verändert. Beispielhaft stellte Geschäftsführer Steffen Vierkorn vier Megatrends vor, die mit der Digitalisierung verknüpfte sind: Globalisierung, Mobilität, Konnektivität und Individualisierung. Die Technologie werde immer mehr zum Treiber von Veränderungen. Besonders sei dies bei der Nutzung von Cloud-Diensten und Komponenten wie „Microsoft Azure“ zu beobachten sowie bei der Vernetzung von Geräten (Internet of Things). Jenseits der Vorstellungskraft lägen mittlerweile die entstehenden Datenmengen. Bis 2025 sei mit 163 Zetabyte zu rechnen, so Vierkorn, die auf etwa 40 Billionen DVDs Platz hätten!

Veränderungen seien auch mit Hinblick auf die Datennutzung und -analyse bei der Produktentwicklung und Geschäftsbeziehungen zu beobachten. Die Rolle von Business Intelligence. Big Data und Advanced Analytics nehme in diesem Szenario weiter zu. Viele Unternehmen versuchten aktuell die Analytik in den Griff zu bekommen. In diesem Zusammenhang stellte Vierkorn das Data-Lake-Konzept der QUNIS vor.

Künstliche Intelligenz QUNIS Day

Ein Beispiel für die Nutzung Künstlicher Intelligenz war auf dem QUNIS Day am Beispiel eines Fahrzeugs zu sehen, das neben Gesichtserkennung auch Objekten beim Fahren ausweichen kann. Quelle: QUNIS

Die dazugehörige Architektur, die traditionelle Data-Warehouse-Welt und die Nutzung von Big Data methodisch und technologisch verknüpfen hilft, wurde auf der Veranstaltung ausführlich vorgestellt. Die Auswirkungen seien auch organisatorisch groß. So würde es künftig mehr und neue Rollen im Team geben müssen, um die unterschiedlichen Anforderungen abdecken zu können.

QUNIS Day 2017

QUNIS Day 2017 Steffen Vierkorn und Patrick Eisner vom QUNIS-Management.

Kostenlose Testdaten für Big-Data-Analysen

Erstellt am: Donnerstag, 1. Juni 2017 von Monika Düsterhöft
Der Verwendung von Testdaten für Big-Data-Analysen stehen häufig der Datenschutz und strategische Bedenken entgegen. Auch sind Daten unterschiedlicher Provenienz und Struktur nicht immer verfügbar oder müssen eventuell aufwändig bereitgestellt werden. Ebenso können beispielsweise Marktzahlen die eigene Analysebasis sinnvoll erweitern.
Umso erfreulicher ist es für Teams, die sich mit Big Data und Advanced Analytics vertraut machen wollen, dass es heute viele, meist öffentlich zugängliche Datenquellen im Internet gibt. Dabei handelt es sich beispielsweise um Daten öffentlicher Einrichtungen. Hier haben die Bemühungen um „Open Data“ Vieles in Bewegung gesetzt. Ebenso stellen Unternehmen zunehmend Daten über REST-Schnittstellen kostenfrei zur Verfügung, in der Hoffnung, dass sich aus der Nutzung Folgegeschäfte ergeben können. Die Testdaten können dabei durchaus ein erhebliches Volumen von bis zu mehreren Hundert Terabytes haben. Nachfolgend stellen wir Ihnen einige dieser Quellen kurz vor:

 

QUNIS

QUNIS arbeitet bei Big-Data-und Advanced-Analytics-Vorhaben mit Testdaten, um Aufgabenstellungen zu veranschaulichen. So verwenden wir Datasets von Kaggle, einer Online-Plattform, die rund 260 Datensätze anbietet. Zudem haben wir ergänzend mit unserer Lösungsbibliothek zahlreiche Big-Data-Anwendungsbeispiele aus allen Branchen vereint, die Ihnen bei der Auswahl und Priorisierung von Use Cases gute Dienste leisten.

 

Bund
Die Geschäfts- und Koordinierungsstelle GovData arbeitet seit Herbst 2015 an dem EU-konformen Metadatenstandard für offene Verwaltungsdaten in Deutschland „DCAT-AP.DE“. Über das Datenportal stellen teilnehmende öffentliche Stellen Informationen zu vorhandenen Datensätze aus verschiedenen Bereichen (z.B. Umwelt, Bildung, Statistik) zur Verfügung. Es ist eine Vielzahl an unterschiedlichen Daten vorhanden. So finden Sie über GovData neben Statistiken und Jahresberichten, beispielsweise auch Karten, Wahlergebnisse oder Datenbanken, die es Ihnen ermöglichen, über Suchkriterien passende Einrichtungen zu finden.
https://www.govdata.de/

 

US-Regierung
Hier findet sich Open Data zu Themen wie “Landwirtschaft”, “Finanzen”, “Wirtschaft”. Insgesamt über 180tausend Datensätze.
https://www.data.gov/

 

Eurostat
Das Statistische Amt der Europäischen Union, kurz Eurostat genannt, bietet ein umfängliches Open-Data-Repository. Hier finden sich beispielsweise Daten zu Themen zur Bevölkerung, Unternehmensdaten, Wirtschaftsdaten, Landwirtschaft oder dem Gesundheitswesen.
http://ec.europa.eu/eurostat/data/database

 

Amazon Datasets
Amazon bietet mit den „AWS Public Data Sets“ eine Vielzahl von Daten, die der Konzern in seiner S3-Cloud-Plattform vorhält. Die Daten sind frei, es fallen aber Prozessgebühren an, wenn Rechner zur Analyse die AWS-Plattform verwenden. Zu den angebotenen Daten gehören untern anderem die täglich aktualisierten NASA-Daten, Klimadaten, Musikdaten („The Millionen Song Collection“), Social-Media-Daten, Daten aus der Wikipedia oder vom „Human Genome Project“.
http://aws.amazon.com/datasets/

 

CERN
Das CERN, die Europäische Organisation für Kernforschung, stellt aus seinen Projekten ebenfalls Daten zur Verfügung. So etwa Proben aus der Arbeit mit dem “Large Hadron Collider”. Unter diesen insgesamt über 300 Terabyte sind nicht nur Rohdaten, sondern auch aufbereitete Daten, die sich etwa in Universitäten nutzen lassen.
http://opendata.cern.ch/?ln=de

 

Weltbank
Die Finanzorganisation bietet eine Fülle an Daten über die weltweite Entwicklung und Wirtschaft. Statt eines Downloads lässt sich auch über einfach zu bedienende Benutzeroberflächen auf die Daten zugreifen.
http://data.worldbank.org/

 

OECD
Die Organisation für wirtschaftliche Zusammenarbeit und Entwicklung (OECD) stellt ein Vielzahl statistischer Daten zu allen 30 OECD-Ländern, der EURO-Zone und der Gesamtorganisation zur Verfügung. Die Daten sind nach Themengruppen organisiert, wie beispielsweise Internationaler Handel, Preise, Public Management oder zum Arbeitsmarkt.
http://www.oecd.org/statistics/

 

Ein Verzeichnis weitere Datenquellen bietet beispielsweise die Website Quora.

Praktische Informationen zu Big Data und Advanced Analytics für Ihre Projekte sowie Analysen und Neuigkeiten aus dem Markt bietet Ihnen auch unser Seite Big Data Factory!