Auch wenn heute Big Data in aller Munde ist, so stehen doch die Unternehmen mehrheitlich immer noch am Anfang mit der Umsetzung. Gerade zu Beginn einer Big-Data-Initiative fällt es schwer, die geeigneten Use Cases zu finden beziehungsweise vorhandene Ideen weiter auszuarbeiten und für ein Proof-of-Concept zu priorisieren. Wir empfehlen daher, sich zunächst in einem individuellen Workshop über die eigenen Anforderungen, den Markt und Technologien bis hin zur eine Road Map klar zu werden. Im Rahmen dieser Vorarbeiten erläutern wir unter anderem Anwendungsbeispiele aus der jeweiligen Branche oder Fachbereich, die von Kunden oder aus dem Markt stammen. Die QUNIS hat hierfür als Besonderheit im Markt eine „Lösungsbibliothek“ geschaffen. Sie vereint und strukturiert aktuell weit über 100 im Markt veröffentlichte Anwendungsbeispiele für die Nutzung von Big Data.
Ein besonders spannendes Anwendungsgebiet für Advanced Analytics ist beispielsweise das Marketing. Die in der Branche viel zitierte 360°-Sicht auf den Kunden bildet künftig die Grundlage dafür, welches Produkt und welche Dienstleistung er über welchen der vielen Kanäle zu welchen Konditionen angeboten bekommt. Je präziser daher eine Segmentierung von Kunden und die Prognose ihres Verhaltens möglich ist, desto höher sind Kontakt- und Antwortraten und damit auch Abschlussquoten und Umsatz, desto höher die Kundenzufriedenheit und Loyalität. Nachfolgend zwei Beispiele:
PayPal – Kunden besser verstehen und binden – Service optimieren durch Text Analytics
PayPal hat über 143 Millionen aktive Kunden und wickelt täglich über 8 Millionen Zahlungen ab. Zahlreiche Kunden äußern sich über Kundenumfragen, E-Mail, Feedback-Formulare im Web, Twitter zu den Dienstleistungen von PayPal, unter anderem darüber, welche technischen Probleme sie haben, was sie mögen, was sie stört und wie man den Service verbessern könnte. Wegen der enorm großen Menge an Feedback, wäre es sehr zeit- und kostenaufwändig, alles textuelle Feedback einzeln zu lesen und zu berücksichtigen. Die automatisierte Analyse des Kundenfeedbacks aus über 60 Ländern und in über 30 Sprachen ermöglicht es PayPal nun, wichtige Probleme und Themen sowie ihre Häufigkeit und Kritikalität automatisch und fast in Echtzeit zu erkennen, zu priorisieren und zu beheben.
ProSiebenSat.1 – Fakten mit Big Data: Was bringen TV-Spots für E-Commerce?
Die ProSiebenSat.1 Media AG vermarktet einerseits klassische TV-Werbezeiten und beteiligt sich andererseits an zahlreiche E-Commerce-Unternehmen. Im Rahmen der Beteiligung stellt ProSieben-Sat.1 u. a. Werbezeiten für die Bewerbung der E-Commerce-Angebote zur Verfügung. Es ist daher von hohem Interesse für ProSiebenSat.1, systematisch ermitteln zu können, welchen konkreten Beitrag die TV-Werbung zur Wertschöpfung des beworbenen E-Commerce-Unternehmens leistet. Wie viele Visitors besuchen genau deshalb die E-Commerce-Website, weil sie die TV-Werbung gesehen haben? Und welchen Umsatz bringen diese Visitors, die nachweislich ursächlich wegen der TV-Werbung auf die Website gekommen sind, in einem bestimmten Zeitraum? Durch den Big Data-Ansatz konnte ein Verfahren entwickelt werden, um den TV-Einfluss auf den Website-Traffic zu messen.