Archiv für die Kategorie Datenmanagement

CDS – der Citizen Data Scientist als Weg aus dem Analytics-Ressourcen-Engpass

Erstellt am: Montag, 18. März 2019 von Monika Düsterhöft

Für die Umsetzung von Advanced-Analytics-Vorhaben ist eine durchdachte Datenstrategie unverzichtbar. Sie regelt alle Fragen rund um die technische Systemintegration, die Data Governance und das unternehmensweite Data Quality Management (DQM).

Darüber hinaus gibt es neue fachliche Anforderungen und Aufgabenfelder wie die Definition komplexer Algorithmen für das Heben wirtschaftlicher Potenziale oder das Deployment der entstandenen Data-Science-Services. Der Data Scientist nimmt bei diesen Aufgaben eine der zentralen Schlüsselrollen ein. 

Neue Advanced-Analytics-Aufgaben benötigen Data Scientisten mit vielfältigen mathematischen, technischen und prozessualen Skills.

Mit seinem tiefen Einblick in die Fachbereiche formuliert der Data Scientist die Projektanforderungen, kümmert sich um die Themen Datenmanagement und Data Quality Management unter Beachtung der Data Governance und übernimmt die Definition von Datenmodellen und Algorithmen. Er hat tiefe mathematisch-statistische Kenntnisse, kann programmieren, kennt sich mit Datenschutz und sonstigen Compliance-Regeln aus und verfügt über umfangreiches Business-Know-how.

Kurzum, der Data Scientist ist ein Allrounder mit viel Spezialwissen und umfassender Erfahrung. Kein Wunder daher, dass diese Fachkräfte äußerst gefragt und ziemlich rar sind und dass viele Digitalisierungsvorhaben schlichtweg wegen dieser fehlenden Skills und Ressourcen stagnieren.

Arbeitsteilung, Tools und das Konzept des Citizen Data Scientist (CDS) können Abhilfe aus dem Ressourcen-Dilemma schaffen.

Ein Ansatzpunkt ist die Entlastung des Data Scientists von Routinen im Datenmanagement. Speziell bei der Datenakquisition können technisch versierte Experten, die sogenannten Data Engineers, den Data Scientist gut unterstützen. Ein zweiter Ansatzpunkt, der sich derzeit am Markt für analytische Applikationen abzeichnet, ist die zunehmende Verlagerung von analytischem Know-how in die Systemwelt.

Etablierte BI-Anbieter beispielsweise erweitern ihr Portfolio um Datenvisualisierungstools, die Visual Analytics ohne Programmieraufwand unterstützen. Per Drag-and-drop können hier Datenströme hinzugefügt, verbunden und analysiert werden, und im Hintergrund laufen die neuesten Algorithmen für die fortgeschrittene Datenanalyse. Auch die Branche der AI-Spezialisten liefert unter der Bezeichnung „Augmented Analytics“ anwenderorientierte Werkzeuge, die Funktionen zur Automatisierung der Datenaufbereitung, Erkenntnisfindung und Datenanalyse enthalten.

Mithilfe solcher anwenderorientierten Frontends können geübte BI Power User, die ein mathematisch-statistisches Grundverständnis sowie Interesse an Analytics mitbringen, bestimmte Aufgabenfelder der Data Science übernehmen und so neben den Data Engineers ebenfalls ihren Teil dazu beitragen, das begehrte Skillset des Data Scientists zu erfüllen. Es kristallisiert sich ein neues Rollenbild heraus. Wir sprechen vom Citizen Data Scientist (CDS), der mit den richtigen Tools in der Lage ist, analytische Aufgaben auszuführen und auch selbst Modelle zu erstellen, die fortgeschrittene Analysen, Vorhersagen und präskriptive Funktionen enthalten.

Die Ausbildung von CDS ist ein aussichtsreicher Ansatzpunkt, um analytische Kompetenzen im Unternehmen aufzubauen.

Im Grunde kann jeder Fachanwender oder IT-Spezialist, der ein Grundverständnis für Datenarbeit sowie statistisches und mathematisches Know-how mitbringt, den Umgang mit Self-Service-Data-Science-Werkzeugen erlernen. Besonders geeignet sind BI Power User, die lernbereit und neugierig darauf sind, Data Science und vorhersagende Algorithmen für ihre Geschäftsprozesse zu erkunden.

Im Gegensatz zum klassischen BI-Anwender, der auf der Basis vorgefertigter Daten-Cubes arbeitet, bewegt sich der CDS dabei jedoch auch auf der Ebene der Rohdaten, um explorativ neue Erkenntnisse zu generieren. Weitere aussichtsreiche Kandidaten für Citizen Data Science sind Ingenieure mit Hintergrundwissen aus Mathematik, Statistik und Modellierung.

Die neuen Data-Science-Experten benötigen Rückendeckung und Unterstützung für ihr Tätigkeitsfeld.

Für ihre Aufgabenfelder bringen unternehmensintern ausgebildete CDS neben ihren analytischen Fähigkeiten auch ihr bereits vorhandenes Markt- und Branchen-Know-how sowie das Wissen um interne Prozessen in die Datenanalysen mit ein. Ein wesentlicher und nicht zu unterschätzender Vorteil. Sie brauchen aber auch Rückendeckung durch das Management sowie Unterstützung durch die interne IT.

CDS benötigen mehr Daten, zum Teil auch mehr ungefilterte Daten und sie brauchen IT-Umgebungen, in denen sie mithilfe aktueller Tools und Technologien experimentieren und Prototypen von Modellen und Applikationen bauen können. Zudem müssen sie den zeitlichen Freiraum für ihre Datenrecherchen erhalten.

Ein versierter Partner an der Seite, der neben der expliziten Data-Science-Expertise auch Erfahrung aus anderen Projekten mit einbringt und die neuen CDS auf ihrem Weg begleitet, ist eine weitere äußerst wertvolle Hilfe und ein wichtiger Baustein für den Erfolg einer Advanced-Analytics-Initiative.

Wenn die Rahmenbedingungen stimmen, können sich Unternehmen auf diese Weise pragmatisch wertvolle Personalressourcen aus den eigenen Reihen erschließen und richtig Schubkraft in ihre Digitalisierungsprojekte bringen.

Mein Tipp: Besuchen Sie das CA-Seminar – Deep Dive Advanced Analytics – Machine Learning in der Praxis mit „R“ – und lernen Sie das Tagesgeschäft eines Data Scientist besser kennen. Das Seminar wird von und mit QUNIS Experten durchgeführt und findet im Rahmen der Kooperation mit der CA Controller Akademie und des Ausbildungsprogramms zum Information Manager statt. Mehr zu allen CA-Seminaren finden Sie hier.

Data-Science-Services einfach und stabil bereitstellen mit dem AHUB Deployment Framework.

Die Blockchain – ist das was oder kann das weg?

Erstellt am: Montag, 18. Februar 2019 von Monika Düsterhöft

Kryptowährungen sind nichts für mich, also warum sollte ich mich mit der Blockchain auseinandersetzen? So oder so ähnlich könnte man denken, wenn das Gespräch auf den mittlerweile nicht mehr gar so neuen Hype-Begriff kommt. Dass sich diese hochinteressante Technologie jedoch nicht nur für das Abbilden von Zahlungstransaktionen eignet, sondern auch anderen Anwendungsfällen eine solide und sehr sichere Plattform bieten kann, versteht man, wenn man sich mit dem Verfahren näher auseinandersetzt.

Wie funktioniert die Blockchain?

Rein technisch ist die Blockchain zunächst einmal eine Datenbank. Allerdings handelt es sich hier nicht um eine relationale Datenbank, wie wir sie vom SQL Server, Oracle, DB2 oder den vielen anderen namhaften Systemen kennen. Die Datenbank besteht vielmehr aus einer verketteten Liste von in Blöcken zusammengefassten Daten.


Verkettungen und Kopien machen die Blockchain einzigartig sicher

Die Verkettung definiert den Kern des Verfahrens

Diese Verkettung ist auch gleichzeitig das Spannende. Jeder der Blöcke „zeigt“ auf den jeweils vorigen Datenblock mittels eines sogenannten „Hashwertes“, der durch kryptografische Verschlüsselung jenes Vorgängerblocks mitsamt dessen Zeiger auf wiederum seinen Vorgängerblock entstanden ist.

Dieses Verfahren macht einen guten Teil dessen aus, was die Blockchain einzigartig und sicher macht: Würde man einzelne Daten innerhalb eines Blockes manipulieren, würde der Hashwert des Blockes damit verändert, was zur Folge hätte, dass man den nachfolgenden Block ebenfalls modifizieren müsste, sodann den nächstfolgenden, da auch dieser in Mitleidenschaft gezogen wäre, und so weiter und so fort.

Das Prinzip der Kopie sichert das Verfahren

Anders als in üblichen Systemen befindet sich die Blockchain-Datenbank nicht auf einem einzelnen zentralen Server, auf den die Teilnehmer des Netzwerkes zugreifen. Vielmehr verfügt jeder einzelne der teilnehmenden Rechner über eine vollständige Kopie der Blockchain. Durch vereinbarte Konsensregeln wird permanent überprüft, dass der Löwenanteil aller Teilnehmer das Gleiche gespeichert hat.

Ein betrügender Teilnehmer müsste also nicht nur seine eigene Kopie der Blockchain verändern, sondern dies insgesamt bei mehr als der Hälfte der Rechner tun, um seine Manipulation der Datenbank als die neue gültige Version durchbringen zu können. Dies jedoch ist wiederum durch das Verfahren selbst weitgehend ausgeschlossen.

Das Verfahren organisiert sich selbst

Jedes Mal, wenn ein Blockchain-Teilnehmer eine neue Transaktion, also einen neuen Datensatz meldet, schreiben alle beteiligten Rechner ihre Version der Blockchain eigenständig fort. Eine gewisse aufgelaufene Anzahl dieser neuen Datensätze wird sodann durch einen der teilnehmenden Rechner in einem neuen Block gebündelt, der dann wiederum mittels des Hashwert-Zeigers an die Kette angehängt wird.

Wer dieser Teilnehmer, der den neuen Block vorgibt, jeweils ist, wird durch einen vereinbarten Algorithmus, auch das Protokoll der Blockchain genannt, entschieden. Hierzu gibt es eine Vielzahl gängiger Methoden. Eine der bekanntesten nennt sich „Proof of Work“. Daneben gibt es aber auch den „Proof of Stake“ Algorithmus, „Proof of Authority“ und einige mehr.

Durch dieses Verfahren, das ein Beispiel der sogenannten Distributed Ledger Technologie darstellt, ist eine zentrale Instanz im Netzwerk überflüssig. Dies macht die Blockchain so spannend, denn damit ist es nunmehr erstmalig denkbar, dass es möglich sein könnte, auf zentralisierte Services wie zum Beispiel Banken zu verzichten, deren Servertechnologie und Programmen wir ja Stand heute quasi bedingungslos vertrauen müssen.

Kryptowährung, Smart Contracts, IoT – wo kommt die Blockchain zum Einsatz?

Am weitesten verbreitet und bekannt sind die sogenannten Kryptowährungen, also digitale Zahlungsmittel, deren Transaktionen auf einer Blockchain gespeichert werden. Bitcoin ist hierbei die älteste Währung, quasi die Mutter aller Blockchain-basierten Geldmittel.

Daneben ist Ethereum eine weitere sehr verbreitete Blockchain Technologie. Besonders bekannt geworden ist diese durch die Möglichkeit der Integration vollautomatischer dynamischer Verträge, sogenannter Smart Contracts.

Diese Programme, die ebenso unveränderlich und fälschungssicher wie alle übrigen Daten auf der Blockchain gespeichert sind und dort zur Ausführung kommen, eröffnen neue Möglichkeiten, die Blockchain im Unternehmensumfeld zu nutzen.

DAPPs für Versicherungen, Logistik, Hotellerie und mehr

Mit Smart Contracts ist es beispielsweise möglich, vertragliche Abkommen beliebiger Art vollautomatisch und unbestechlich zur Ausführung zu bringen, was ein enormes Potenzial an Möglichkeiten eröffnet, auch komplexe Prozesse auf sehr verlässliche Weise zu automatisieren. Man spricht hierbei auch von dezentralisierten Applikationen, sogenannten DAPPs.

So ist großes Automatisierungspotenzial beispielsweise bei Versicherungen denkbar – die Blockchain ermöglicht die verlässliche Sammlung aller Kundenzahlungen mit automatischer Auszahlung bei Eintritt eines im Smart Contract definierten Versicherungsfalls.
Ein weiteres großes Anwendungsfeld ist in der Logistik angesiedelt, lassen sich doch durch die Blockchain ganze Lieferketten mit allen Zwischenstationen zuverlässig dokumentieren.

Auch in IoT (Internet of Things)-Szenarien bieten Smart Contracts, neben der sich unter dem Namen IOTA etablierenden Blockchain, die sich durch eine ganz besonders hohe Transaktionsrate auszeichnet, hervorragende Optionen. So könnte beispielsweise ein Hotel enorme Einsparungen durch vollautomatische Services erzielen. Ein denkbares Szenario wäre: Bei Zahlung einer 24-Stunden-Gebühr werden für den Hotelgast Licht, Wasser sowie Strom aktiviert und das Türschloss automatisch geöffnet – was Schlüsselkarten oder ähnliches überflüssig macht.

Es ist noch nicht alles gedacht!

Bei all diesen vielen Möglichkeiten besteht zum aktuellen Zeitpunkt neben dem großen Hype um das Thema Blockchain noch einige Unsicherheit, was die Zukunft dieser Technologie betrifft. In einigen Aspekten gibt es auch noch Entwicklungsbedarf, um bestehende Schwachstellen zu beseitigen.

Dennoch lassen die Vielzahl der bereits umgesetzten Anwendungsfälle und die Möglichkeiten, die die Technologie in sich birgt, erahnen, dass das System Blockchain von dauerhaftem Bestand sein wird. Auch in der BI und Analytics tun sich spannende Einsatzfelder wie Echtzeitanalyse zur Anomalie- oder Betrugserkennung, eine Überwachung von Lieferketten oder einer Rückverfolgung von Produkten auf, die wir weiterverfolgen werden.

In Summe lässt sich also festhalten: Blockchain ist zwar nicht von Beuys, man sollte sie aber trotzdem nicht entsorgen. Vielmehr sollte man wachsam sein und bei Szenarien und Initiativen, bei denen es um sichere, nachvollziehbare Datenströme geht, immer auch mal ein Auge auf die Technologien und Plattformen der Blockchain werfen und untersuchen, wo sich ein Einsatz ausprobieren ließe oder gar lohnen könnte.

Vielleicht wollen Sie ja ein Vorreiter sein?

Sprechen Sie mit uns, wir bringen gerne unsere Erfahrung und Know-how mit ein KONTAKT

Datenqualität in BI und Big Data – wo liegt der Unterschied und wie funktioniert es zusammen?

Erstellt am: Freitag, 4. Januar 2019 von Monika Düsterhöft

In einer klassischen BI-Umgebung lagern typischerweise strukturierte Daten aus internen Vorsystemen wie Enterprise Resource Planning (ERP), Customer Relationship Management (CRM) oder der Buchhaltung. Für die Qualitätssicherung gibt es Best Practices und erprobte Technologien – man weiß genau, wie und wo man bei der Optimierung ansetzen kann, wenn der Bedarf da ist.

Unklar ist hingegen die Qualitätssicherung bei den für Predictive Analytics nötigen Big-Data-Quellen. Nutzen und Wertschöpfung der anvisierten Vorhersagemodelle hängt auch hier maßgeblich von der Qualität der zugrundeliegenden Daten ab. Systemarchitekten diskutieren nun, wie sie die Qualität von riesigen semi- und polystrukturierten Daten bewerten und sichern, welche Systemarchitekturen dabei ins Spiel kommen und wie das Datenmanagement funktioniert.

Das Data Warehouse bleibt der Single Point of Truth

Das klassische Data Warehouse hat als Kern einer typischen BI-Umgebung auch in der Welt der fortgeschrittenen Analysen seine Daseinsberechtigung. Es ist die beste Grundlage für standardisierte Berichts- und Analyseprozesse mit den unverzichtbaren Finanz- und Steuerungskennzahlen. Geht es um vorausschauende Unternehmenssteuerung, so sind diese Berichtsstandards um Trendanalysen und Prognosen aus der Big-Data-Welt zu ergänzen. In der Praxis erweist sich der sogenannte Data Lake als pragmatischer Implementierungsansatz, um hochstrukturierte Daten aus Transaktionssystemen und wenig strukturierte Big Data zusammenzuführen.

Ausgehend von der bewährten BI-Architektur mit offenen Schnittstellen lassen sich damit Big-Data-Komponenten in eine vorhandene Informationsplattform integrieren. Wichtig dabei ist, dass das zentrale Data Warehouse seinen Anspruch als Single Point of Truth im Unternehmen behält. Will man das Datenmanagement und die Qualität der Datenbasis für Advanced Analytics optimieren, ist es daher eine gute Idee, mit dem meist vorhandenen Data Warehouse zu starten.

Wie die Projektpraxis zeigt, besteht hier nämlich oft noch Handlungsbedarf. Abgesehen von Qualitätsmängeln und inkonsistenten Datenstrukturen wird mit dem Trend zu Self-Service-BI auch das bekannte Problem von Insellösungen und Datensilos wieder akut, das früher durch diverse Excel-Lösungen der Fachabteilungen verursacht wurde. Self-Service im Fachbereich ist praktisch und hat seine Berechtigung, aber das zentrale Business Intelligence Competence Center oder der BI-Verantwortliche müssen die Datenströme unter Kontrolle halten und darauf achten, dass der Single Point of Truth nicht ausgehebelt wird.

Data Warehouse Automation sichert die Datenqualität

Sind die Datenströme gut modelliert, bestehen große Chancen für eine dauerhaft hohe Datenqualität im BI-System. Durchweg strukturierte Daten von der operativen bis zur dispositiven Ebene, standardisierte Auswertungsverfahren und mächtige ETL-Werkzeuge (Extraktion, Transformation, Laden) mit integrierten Prüffunktionen ermöglichen eine hohe Automatisierung der Datenauswertung.

Für den effizienten Aufbau, die Anpassung und die Optimierung von Data Warehouses gibt es inzwischen ausgereifte Verfahren, die Standardisierung und Automatisierung erhöhen und damit die Fehlerrisiken auf ein Minimum senken. Diese Data Warehouse Automation beruht auf Frameworks, die bereits Best Practices für ETL nach etablierten Verfahren sowie Prüflogiken zur Sicherung der Datenqualität enthalten beziehungsweise deren Modellierung auf Meta-Ebene unterstützen. Neben einer effizienten Entwicklung und Administration vermeidet dieser lösungsorientierte Ansatz Konstruktionsfehler und sorgt dafür, dass für eine saubere Datenverarbeitung Best Practices zum Einsatz kommen.

Da Business Intelligence die Business-Realität möglichst genau abbilden will, ist ein hohe Datenqualität unverzichtbar. Klassische Kriterien wie Exaktheit und Vollständigkeit sind dabei zentrale Anforderungen. Schon ein Datenfehler oder eine Lücke im operativen Bestand kann das Ergebnis einer aggregierten Kennzahl verfälschen. Im Rahmen des internen und externen Berichtswesens stehen damit schnell falsche Entscheidungen oder Compliance-Verstöße im Raum.

Bei Big Data steuert der Business Case die Governance

In der Big-Data-Welt gestaltet sich die Datenqualität anders. Hier geht es zunächst darum, die relevanten Datenquellen zu bestimmen, die Daten abzuholen und zu speichern. Das ist nicht immer trivial angesichts einer Bandbreite von Daten aus dem Internet of Things, unstrukturierten Informationen aus Blogs und Social Networks, Sensordaten aus Kassensystemen und Produktionsanlagen, Messdaten aus Leitungsnetzen bis zu Datensätzen aus Navigationssystemen.

Im Gegensatz zur BI-Welt bestehen hier für die interne Datenarbeit keine allgemeingültigen Geschäftsregeln und Standards. Da es um die statistische Auswertung von Massendaten geht, sind die BI-typischen Qualitätskriterien Vollständigkeit und Exaktheit weniger wichtig. Im Rahmen der statistischen Verfahren fallen einzelne Fehler und Lücken nicht ins Gewicht, und Ausreißer lassen sich regelbasiert eliminieren. Wie groß die kritische Masse für belastbare Ergebnisse ist, wie genau, vollständig oder aktuell die Datenbasis sein muss und in welcher Form Informationen nutzbar gemacht werden, das ist für Big-Data-Analysen fallbezogen zu klären.

Die Vielfalt der Einsatzbereiche und damit die Rahmenbedingungen für die Bewertung und Bearbeitung von Daten sind nahezu unbegrenzt. Geht es etwa beim Internet of Things um die grobe Ressourcenplanung von Wartungsarbeiten für angebundene Geräte, sind Ausfälle einzelner Geräte-Meldesysteme irrelevant, da die Ermittlung von Peaks ausreicht. Im Rahmen von Predictive Maintenance ist dagegen jede konkrete Ausfallmeldung eines Gerätes wichtig. Für Kundenzufriedenheitsindizes auf Basis von Weblog-Analysen kommt es nicht auf jeden Beitrag an. Vielmehr geht es darum, Trends abzuleiten und diese in sinnvoll definierte Kennzahlen zu überführen.

Bei Big-Data-Anwendungen fallen also Datenqualitätsmanagement und Governance ebenso individuell aus wie das Analyseszenario des jeweiligen Business Case. In hoch automatisierten Anwendungen wie Autonomes Fahren oder Predictive Maintanance, in denen ausschließlich Maschinen über die Ergebnisse und Auswirkungen von Datenanalyen entscheiden, ist die Data Governance besonders wichtig. Die Quellen von Big Data liegen häufig außerhalb des Einflussbereichs der internen Prozesse: Maschinen-Output, Nutzereingaben oder Internet-Datenströme lassen sich nicht über interne organisatorische Maßnahmen kontrollieren. Bei permanent fließenden, unstrukturierten Datenquellen wie Chatforen greifen auch die klassischen ETL-Methoden nicht, und Störungen wie etwa eine Leitungsunterbrechung können nicht durch Wiederholung oder das Wiederherstellen des Datenbestands ausgeglichen werden.

Eine profunde Konzeption sichert den Projekterfolg

Das Potenzial von Predictive Analytics ist riesig, und viele Unternehmen erschließen sich gerade neue Dimensionen der Informationsgewinnung. Durch Cloud-Betriebsmodelle lassen sich neue Anwendungen schnell und kosteneffizient umsetzen. Voraussetzung dafür ist eine profunde Konzeption, die den kompletten Wertschöpfungsprozess der Daten mit Blick auf ein präzise formuliertes Projektziel abdeckt. Für ein erfolgreiches Projekt müssen anspruchsvolle Fragen der Fachlichkeit, Technik und Organisation geklärt werden. Hier empfiehlt es sich, die Erfahrung eines ganzheitlich orientierten Beratungsunternehmens hinzuzuziehen, um sich zeitraubende Umwege und schmerzhafte Lernzyklen zu ersparen.

Mehr zum QUNIS Data Lake Konzept erfahren.

Bereit für Künstliche Intelligenz?

Erstellt am: Donnerstag, 14. Juni 2018 von Monika Düsterhöft

Wir alle kennen den Begriff Künstliche Intelligenz und haben über das Science-Fiction-Genre Bekanntschaft mit An droiden oder dem Supercomputer Deep Thought gemacht. Wir nutzen Internet-Suchmaschinen oder Sprachassistenten, und in den Medien wird täglich über Innovationen wie selbstfahrende Autos, intelligente meinungsbildende Algorithmen oder menschlich anmutende, sogar mit Gefühlen ausgestattete Pflege- und Service-Roboter berichtet. Veränderungen, die KI für unsere Lebens-, Geschäfts- und Arbeitswelt mit sich bringt, werden in der kompletten Bandbreite von Panik über Skepsis und Besorgnis bis hin zur totalen Faszination diskutiert. Und dass Daten sowie der intelligente Umgang damit die Basis dafür bilden, ist kein Geheimnis mehr.

In diesem Zusammenhang den Umsetzungstand von KI in den Unternehmen zu erfragen und dabei den Fokus auf die Gruppe der Controller zu legen, erschien uns als logisch und interessant. Denn gerade die Controller sind es, die sich schon lange mit dem Thema Datenauswertung beschäftigen und auf dem Weg der digitalen Transformation zum datengetriebenen Unternehmen viele entscheidende Stationen mitgestaltet haben. Sie sind es, die innovativen Schlüsseltechnologien und Verfahren der Datenanalyse aufgegriffen, weiterentwickelt und bis hin zur Etablierung als Standardtechnologie vorangetrieben haben. Waren BI, OLAP, Big Data und Advanced Analytics namentlich bis dato zwar eher im Umfeld der Unternehmenssteuerung anzutreffen, so sind sie nun Teil von Digitalisierungsinitiativen und Innovationsprojekten.

Gemeinsam mit der Controller Akademie haben wir von QUNIS eine Anwenderbefragung zur Organisation von Projekten mit Big Data und Advanced Analytics durchgeführt und sind zu folgenden Ergebnissen gelangt: Eine große Mehrheit der Unternehmen gaben an, dass Advanced Analytics bzw. KI-Methoden hoch strategische Themen sind und eine wichtige Rolle bei der digitalen Transformation spielen. Dabei setzen 44 Prozent mit Advanced Analytics noch primär auf interne Prozessverbesserungen. Genauso viele Unternehmen sehen diese Methoden jedoch als entscheidend für zukünftige Innovationen rund um ihre Produkte und Services. Trotz der bestehenden Unsicherheiten hinsichtlich der Umsetzung erklären die Unternehmen fast durchweg ihre hohe Investitionsbereitschaft.

Beim Thema Datenmanagement ist den meisten sehr wohl klar, dass die klassische BI-Architektur mit Data Warehouse (DWH) nur begrenzt für die neuen Anwendungsbereiche geeignet ist. Die Kombination vorhandener Daten, die oft in einem DWH organisiert sind, mit weiteren internen oder externen Datenquellen und -formaten, wird als eine der größten Herausforderungen genannt. Dazu gehört auch die offene Frage, wie sich eine flexible Datenarchitektur schaffen lässt, welche die bisherige BI- mit der Big-Data-Welt zusammenführt und somit auch Investitionen schützt. Für diese Verbindung hat sich das Data-Lake-Konzept in der Praxis als sehr tragfähige Lösung bewährt. Dieses kann den Auf- und Umbau hin zu agileren und offenen Architekturen unterstützen.

Aber auch organisatorisch müssen für das datengetriebene Unternehmen die richtigen Weichen gestellt werden. Ohne klare Definitionen der Datenhoheit mit Verantwortlichkeiten, die über Rollen wie Data Owner, Data Scientist oder Data Engineer im Rahmen einer Data Governance festgelegt sind, nutzt das beste Systemkonzept nichts.

Einig ist man sich zudem darüber, dass die Verantwortlichen über spezifische Skills verfügen müssen, die über bisherige Anforderungen im BI-Bereich hinausgehen. Falls das BI-Team sich um Advanced Analytics kümmern sollte, halten fast 60 Prozent der Befragten es für notwendig, dass hier zusätzliche Kompetenzen aufgebaut werden. Neben Spezialisten für statistisch-mathematische Methoden sind dabei auch Experten gefragt, die hochkomplexe Auswertungen in verständliche, businessrelevante Informationen übertragen.

Viele Unternehmen haben bereits gute Ideen, an welcher Stelle sie Advanced Analytics und KI-Methodik einsetzen könnten. Hinsichtlich der konkreten Umsetzung auf Basis praktikabler Use Cases tut man sich derzeit aber noch schwer. Hier sind Controller gefordert, ihre Erfahrung in der Datenanalyse einzubringen. Expertenhäuser wie QUNIS ergänzen und begleiten dies mit bereichsübergreifender, strategischer Fachkompetenz. Diese Kombination ist eine optimale Basis, um datengetriebene Geschäftsmodelle voranzubringen und neue Potenziale für das Unternehmen zu erschließen.

Alle Ergebnisse im Detail finden Sie hier KOMPLETTE STUDIE DOWNLOADEN

Trends bei Nutzung von Big Data 2018

Erstellt am: Dienstag, 6. März 2018 von Sascha

Nach Einschätzung der Marktforscher von IDC wird der weltweite Umsatz mit Software, Hardware und Services für Big Data und Big Data Analytics in den kommenden zwei Jahren auf 203 Milliarden US-Dollar steigen. Das jährlich zu den bereits vorhandenen Datenbergen hinzukommende Datenvolumen könnte laut der Auguren im Jahr 2025 bereits bei 180 Zetabyte liegen. Gewaltige Datenmengen und viele Chancen für Unternehmen, neue oder detailliertere Informationen zu extrahieren und für die Unternehmens- und Prozesssteuerung, Planung oder Produktentwicklung einzusetzen.

Prescriptive Analytics

Unter den vielen Aspekten, die im Zusammenhang mit der Nutzung von Big Data und Advanced Analytics diskutiert werden, finden sich einige Entwicklungen, die laut Marktbeobachtern in den kommenden zwölf Monaten besondere öffentliche Aufmerksamkeit erfahren werden.
So wird erwartet, dass das Interesse an Prescriptive Analytics steigt. Es vereint Verfahren des Machine Learning, Simulationen und mathematische Berechnungen, um bei einer bestimmten Fragestellung die optimale Lösung oder das beste Ergebnis unter verschiedenen zur Auswahl stehenden Möglichkeiten zu ermitteln. Praktisch werden also beispielsweise kontinuierlich und automatisch neue Daten verarbeitet, um die Genauigkeit von Vorhersagen zu erhöhen und bessere datengetriebene Entscheidungsoptionen zu bieten. Prescriptive Analytics könnte so neben Cognitive Computing den Mehrwert bei der Analyse von Big Data künftig erheblich steigern helfen.

ECM und Big Data

Big Data ist ein Sammelbegriff, der in der Praxis sowohl vorhandenen Daten, etwa aus einem Data Warehouse oder ERP-System, als auch neue Datenquellen einbezieht. Diese können dabei durchaus auch innerhalb der eigenen Unternehmensgrenzen liegen. So wird für 2018 erwartet, dass sich Organisationen mehr für historische Daten und Dokumente interessieren werden, die bislang nicht in einer digitalen Form vorliegen. In diesen können wichtige Informationen liegen, die zum Beispiel für Voraussagen hilfreich sein können. Damit zeichnet sich hier eine Entwicklung ab, die wir auch bei QUNIS sehen, nämlich der Annäherung und Kombination von Enterprise Content Management und Analyseumgebungen.

Datenqualität statt Datenquantität

Angesichts der wachsenden Datenberge ist es trotz sinkender Hardwarepreise, Cloud und Konzepten wie dem Data Lake auf Dauer nicht wirtschaftlich, schlicht alle erreichbaren Daten zu speichern. Unternehmen müssen sich daher in den kommenden Monaten strategisch damit beschäftigen, auf welche Datensätze sie es besonders abgesehen haben bzw. welche ihnen Ansätze für bessere Analysen bieten können. Ebenso wird es um Wege zur Verbesserung der Datenqualität gehen, denn Datensätze können irrelevant, ungenau oder gar beschädigt sein. Qualität statt Quantität, heißt also die Parole für 2018.

Machine Learing hilft beim Datenschutz

Herzstück einer Big-Data-Analyse sind Verfahren der Künstlichen Intelligenz. Diese müssen in 2018 verstärkt für Auswertungen im Bereich der Datensicherung und Datensicherheit zum Einsatz kommen, da auf diesem Anwendungsgebiet laut Marktbeobachtern Nachholbedarf herrscht. So werden Maschinen beispielsweise schon bald in der Lage sein, mit Hilfe von Machine Learning menschliches Verhalten „vorherzusagen“ und automatisiert „unlabeled data“ zu verwenden. Dadurch wird sich Künstliche Intelligenz zu einem zentralen Instrument für Datenschutz und Abwehr unerlaubter Zugriff entwickeln.

Neue Rollen und viele Stellenangebote

Aber nicht nur die Vielfalt und Nutzungsformen von Big Data werden sich in der nächsten Zeit weiterentwickeln, sondern auch die Menschen, die damit arbeiten. So entstehen neben dem viel zitierten Data Scientist weitere Rollen in den Organisationen, welche die Erfassung, Auswertung und Operationalisierung von Big Data überhaupt erst strukturiert möglich machen. Auch die QUNIS hat hierzu bereits im Rahmen ihrer Big Data Methodik ein modernes Rollenmodell entwickelt, das detailliert die Aufgaben und Kombinationen diskutieren und definieren hilft. Zugleich wächst im Markt die Sorge, dass sich nicht ausreichend Spezialisten für diese oft sehr anspruchsvollen Aufgaben und Rollen rund um Big Data finden lassen. So schätz beispielsweise IBM, dass allein in den USA das Stellenangebot für Big-Data-Experten im weitesten Sinne von 364.000 offenen Stellen in 2018 auf 2,72 Millionen bis 2020 ansteigen wird.

Keine Industrie 4.0 ohne Big Data und Künstliche Intelligenz

Erstellt am: Mittwoch, 14. Februar 2018 von Sascha

Mit der zunehmenden Praxis wächst auch die Zahl der Umfragen zu Industrie 4.0. So hat sich jetzt die Siemens Financial Services bei Herstellern und Beratungshäuser aus dem Bereich der Produktion und Wartung in elf Ländern umgehört, wo der Schuh drückt. Heraus kamen sechs Themenfelder, die Hersteller nach eigenen Aussagen aktuell angehen müssen:

  • Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0
  • Zugang zu Finanzierungen, die den erforderlichen Investitionszeitraum berücksichtigen
  • Aufbau einer Kooperationskultur, die notwendig ist, um gemeinsam am Erfolg in einer vernetzten Industrie-4.0-Welt zu arbeiten, ob im eigenen Unternehmen, in der Lieferkette oder branchenübergreifend (mehr zur Unternehmenskultur und Industrie 4.0 finden Sie hier)
  • Überwindung von Risiken bezüglich der Daten- und Internetsicherheit in einer Welt, in der sich große Mengen sensibler Daten durch das Internet bewegen
  • Umfassender Zugang zu einer ausreichenden Zahl an realen Beispielen für erfolgreiche digitale Transformation aus allen Fertigungssektoren
  • Spezialisierte strategische Managementkompetenzen zur Erarbeitung eines klaren Stufenplans, um Industrie 4.0 zu erreichen. Spezialisierte strategische Führungsqualität zur Entwicklung eines klaren, gestaffelten Plans, um Industrie 4.0 umzusetzen.

Laut der Autoren zeigen diese Aspekte, dass es mittlerweile nicht mehr darum geht, grundsätzlich die Notwendigkeit zur Digitalisierung und Automatisierung zu diskutieren. Vielmehr stehen mittlerweile praktische Fragen im Mittelpunkt, wie Organisation den Weg zur Industrie 4.0 schrittweise und mit Augenmaß gehen können – einschließlich laufender Qualitätskontrollen und RoI-Maßnahmen.

Es fehlt an Expertise für digitale Produkte und Künstliche Intelligenz

Von allen Themenfeldern wurde die „Entwicklung der Kompetenzen und Kenntnisse von digitaler Technologie für einen erfolgreichen Übergang zu Industrie 4.0“ als größte Herausforderung benannt. Es fehlt bis dato digitales Produktionswissen, welches es operativen Mitarbeitern ermöglicht, Maschinen- und Leistungsdaten auf ihren portablen Dashboards zu interpretieren und entsprechende Maßnahmen zu ergreifen. Ferner müssen „digitaler Wartungskompetenzen“ entstehen, wie es die Studienautoren nennen, also, dass Techniker auch das Know-how haben, um komplexe digitalisierte Betriebssysteme und Geräte instandzuhalten. Und schließlich bedarf es der Expertise für operative und strategische Analysen. Gemeint ist damit, dass man die Auswertung großer Datenmengen, die sich durch die enge Vernetzung von Maschinen, Anwendungen und Menschen künftig rasant erhöhen (Big Data) in den Griff bekommt. Diese Unmengen an Daten – einschließlich Produktionsdaten, Lieferkettendaten, Marktdaten und finanziellen Daten – erfassen und analysieren zu können, ist entscheidend um die eigene Wettbewerbsfähigkeit künftig zu erhalten bzw. zu verbessern.

Datenmanagement auf Industrie 4.0 vorbereiten

Voraussetzung dafür ist, dass Unternehmen zunächst ihr bisheriges Datenmanagement und ihre Dateninfrastruktur bewerten, ob und wie sich diese für die Erfassung und Analyse von Big Data weiterentwickeln lassen – ohne bisherige Investitionen deshalb gleich aufgeben zu müssen. Ebenso gehört zu Vorarbeiten eine Strategiediskussion sowie Auswahl von Use Cases. Schauen Sie sich einmal unsere Methodik für Big-Data-Umgebungen sowie unser Data Lake Konzept an, die unsere langjährige Projekterfahrung und Expertise auch in den neuen Technologien und Verfahren wie die der Künstlichen Intelligenz widerspiegeln!

Self Service Business Intelligence will gelernt sein

Erstellt am: Donnerstag, 7. Dezember 2017 von Sascha

Es war um das Jahr 2010 als das Schlagwort Self Service im Markt für Business Intelligence die Runde machte. Das Thema wurde zunächst stark von Herstellern wie Microsoft, Tableau oder QlikView getrieben, während diese Anforderung in Anwenderunternehmen noch selten formuliert wurde. So mussten wir denn auch in der Beratung häufig zunächst ein Grundverständnis für Self Service BI (SSBI) schaffen, welche Vorzüge SSBI bieten könnte. Vielen Anwendern war gar nicht bewusst, wo SSBI anfängt und wo es endet. Seitdem hat es sich mehr und mehr etabliert und ist aus keinem Projekt mehr wegzudenken.

Selbst wenn es zu Beginn nicht explizit vom Kunden gefordert wird, zeigt sich bei der Ausarbeitung der Anforderungen, dass hier Bedarf besteht. Anwender, meist so genannte Power User, wollen sich ihre Daten immer häufiger selber erschließen und Analysen und Reports erstellen – eigenständig und unabhängig von der IT. Entsprechend wird erwartet, dass eine Business-Intelligence-Lösung und Technologie diese Nutzer bestmöglich unterstützt.

SSBI erfordert Erfahrung im Umgang mit Daten

Doch Self Service Business Intelligence ist kein Selbstläufer, sondern bedeutet für alle Betroffenen ein Umdenken. Man kann dem Anwender nicht ohne Anleitung einfach Werkzeuge an die Hand gegeben, damit er sich seine Daten selbst erschließt oder Reports erstellt. Es ist für ihn ungewohnt oder neu, sich jetzt mit den Tools sowie Fragen auseinandersetzen zu müssen, die Ihm sonst die IT abgenommen hat. Hilfe bei der Nutzung des BI-Frontends als auch die Datenintegration sind daher bei SSBI vonnöten.

Die gilt im noch stärkeren Maße bei der Datenexploration. Diese ist dann sinnvoll, wenn wenig über die Daten bekannt ist und die Explorationsziele nicht genau spezifiziert sind. Der Nutzer muss dann mit Hilfe von Methoden und Verfahren aus dem Gebiet der Advanced Analytics diese Daten selbstständig erforschen und Schlussfolgerungen ziehen können. Ebenso muss er im Explorationsprozess in der Lage sein, die Explorationsziele bei Bedarf verändern und anpassen zu können. Dies setzt viel Erfahrung mit Advanced Analytics voraus.

Ebenso mussten und müssen BI-Software-Hersteller lernen, wie sie SSBI in ihren Produkten am besten unterstützen. Manche Produkte konnten sich am Markt durchsetzen, andere verschwanden wieder. So konnte beispielsweise Microsoft in seinem BI-Stack anfangs nur wenige Tools für SSBI vorweisen: Excel, Power-Pivot, PerformancePointServices und die ReportingServices. Mit der Zeit gesellten sich zu diesen weitere Möglichkeiten hinzu durch MobileReports, PowerBI, PowerView, PowerQuery, AS-Tabular und DAX. PowerBI hat mittlerweile in seiner aktuellen Version sogar Künstliche Intelligenz integriert, um die Datenexploration zu vereinfachen (mehr zu PowerBI finden Sie hier).

IT muss Tools und Infrastruktur harmonisieren

Neben dem Anwender galt es auch für die IT umzudenken. Sie konnte nun nicht mehr einfach einen Cube entwickeln, dem nur mit Spezial-Wissen und als MDX-Experte die richtigen Zahlen zu entlocken waren. Nein, Cubes mussten auf einmal anwenderfreundlich sein! Dies setzte unter anderem voraus, dass man verstand, wie SSBI-Tools mit einem Cube umgehen, denn diese arbeiten eher per Drag-and-Drop mit Measures und Dimension auf den verschiedenen Achsen. Für selbstgeschriebene MDX-Abfragen war da kein Platz. Die IT muss daher Infrastruktur und Tools bestmöglich aufeinander abstimmen, soll SSBI in der Praxis funktioniere. In diesem Zusammenhang hört man gelegentlich auch von Self Service Data Integration (SSDI). Power-Pivot und AS-Tabular waren im Microsoft-BI-Stack die ersten Gehversuche, um den Anwendern die Integration von Daten aus verschiedenen Datenquellen zu einem Datenmodel zu ermöglichen. Dem Thema wird aber bislang noch zu wenig Aufmerksamkeit geschenkt, vielleicht auch weil die Tools dafür noch nicht die notwendige Flexibilität und Leichtigkeit bieten.

SSBI für den Power User

Selbst wenn alle genannten Voraussetzungen und Anpassungen gegeben sind, wird SSBI wohl auch künftig eine Domäne für Power User bleiben. Man muss schon ein gutes Verständnis über die eigenen Daten und Datenmodelle haben, um selbstständig arbeiten zu können. In den Projekten läuft es daher für gewöhnlich darauf hinaus, dass Power-User aus den Daten neue Erkenntnisse gewinnen und diese dann als Report den übrigen Endanwendern (Report-Konsumenten) zur Verfügung stellen.

Weitere Beiträge zu Entwicklungen in der Business Intelligence:

Der Chief Data Officer – Eine neue Rolle etabliert sich

Erstellt am: Mittwoch, 27. September 2017 von Sascha

Die digitale Transformation von Unternehmen ist eng verknüpft mit der Organisation und Weiterentwicklung des bisherigen Information Managements. Dies führt unter anderem zur Entwicklung neuer Rollen, denen eine strategische Aufgabe bei der Umsetzung zukommt. Damit Daten tatsächlich operativ nutzbar werden, müssen sie auch technisch verfügbar, korrekt und standardisiert (Governance) vorliegen. Um diese Vorgaben umzusetzen und zu überwachen, haben manche Organisationen damit begonnen, die Rolle eines „Chief Data Officers“ (CDO) zu definieren und zu besetzen. Nicht zu verwechseln mit der Rolle eines „Chief Digital Officers“ (ebenfalls CDO abgekürzt) definiert der Datenverantwortliche, wie Daten künftig erfasst, verwaltet, geschützt und letztlich zu Geld gemacht werden sollen. Ob dies in der Praxis bereits gelingt, hat nun die vom US-Anbieter Experian in Auftrag gegebene Umfrage „The Chief Data Officer: Powering business opportunities with data“ näher beleuchtet. 200 CIOs und 50 CDOs aus den USA nahmen laut der Autoren teil. Sie stammen aus Unternehmen mit mehr als 500 Mitarbeitern und aus diversen Branchen. Nachfolgend einige Ergebnisse aus dieser Untersuchung.

Big Data verstärkt den Bedarf an Chief Data Officer

Häufigstes Motiv für die Schaffung einer dedizierten CDO-Rolle ist danach der Wunsch, durch sein Wirken die Nutzung von Big Data profitabel zu machen sowie einen datengetriebenen Ansatz zu finden, der strategische Vorteile schafft, bei gleichzeitig überschaubaren Projektrisiken. Selbst zwei Drittel aller CIOs, in deren Unternehmen bislang keine entsprechende Position existiert, erklärten, dass sie sich mit den oben erwähnten Themen im Datenmanagement überfordert fühlten und daher einen Chief Data Officer begrüßen würden.

Doch Anspruch und Wirklichkeit klaffen in der Praxis offenbar noch häufig auseinander – was angesichts der noch „jungen“ Rolle nicht verwundert. So erklärte fast jeder zweite CDO, er habe seine Positionen angetreten, ohne dass der Aufgabenbereich und die Verantwortlichkeiten zuvor geklärt worden seien. Zwar wären im weiteren Verlauf der Karriere bei etwa 40 Prozent der Befragten die ebenfalls knappen Ressourcen und Budgets etwas aufgestockt und auch der bis dato meist beschränkte Zugriff auf die Datenhaltungen gelockert worden. Viele würden sich aber bis heute nicht mit der innovativen Nutzung von Daten beschäftigen, sondern müssten vor allem Projekte zur Kostenersparnis treiben.

Die Gründe für diesen Widerspruch führen die Autoren nicht allein auf unklare Rollendefinitionen zurück, sondern auch auf die Tatsache, dass in vielen Organisationen das Datenmanagement grundsätzlich noch erhebliche Defizite aufweise. So sehen laut Umfrage insbesondere die CIOs im fehlenden Datenzugriff das häufigste Hindernis auf dem Weg zu einer stärker datengetriebenen Organisation. Die von den CDOs beklagten schmalen Budgets würden Investitionen in entsprechende Dateninfrastrukturen erschweren, und es fehle nach Ansicht vieler Befragter an Skills in den Unternehmen. Daran könnte auch ein Chief Data Officer so schnell nichts ändern (Hilfe bei der Schaffung einer gemeinsamen, performanten Datenarchitektur für Big Data und Data-Warehouse-Systemen bietet die praxiserprobte QUNIS-Methodik).

Chief Data Officer – eher operativ oder strategisch tätig?

Hinzu kommt, dass sich der CDO in der Praxis offenbar häufig in einer schwierigen Position zwischen IT und Fachbereich befindet. Während die Business User immer lauter über den fehlenden Datenzugang klagten, müsse der CDO oft erst bei der IT anfragen, um hier Änderungen zu bewirken, so die Autoren. Diese könne oft Stunden oder gar Tage dauern. Zudem werde sich der Druck auf den Chief Data Officer in den kommenden zwei Jahren weiter verstärken, da Themen wie Datenschutz, die rasante technologische Entwicklung und steigende Kundenerwartungen viel Arbeit machten. QUNIS kann diese sehr operativ beschriebene Arbeitsweise eines CDOs aus ersten Kundenprojekten in Deutschland nicht bestätigen. Vielmehr stehen nach unserer Erfahrung eindeutig strategische Aufgaben im Vordergrund.

Konkurrenz zwischen Chief Data Officer und CIO

Viele CDOs beklagten in der Umfrage zudem, dass sie nicht zum C-Level gehörten, sondern häufig nur ein Junior Partner für das Top-Management seien. Auch bei den CIOs scheint diese Einstufung immer mehr zu überwiegen. So sahen vor zwei Jahren in einer vergleichbaren Umfrage von Experian  noch 16 Prozent mehr von ihnen den CDO als gleichrangigen Kollegen an als es jetzt der Fall ist. Ob diese Zurückstufung eher strategische, organisatorische oder vielleicht finanzielle Gründe hat, vermochten die Autoren nicht sicher zu sagen. Bei der QUNIS können wir diese Konstellation innerhalb der Hierarchie bislang nicht bestätigen. Vielmehr genießen die uns bekannten CDOs ein hohes Ansehen im Management und übernehmen strategische Aufgaben, die als sehr sinnvoll für die Organisation betrachtet werden. Möglich aber, dass in manchen der befragten Unternehmen eine Konkurrenzsituation zwischen CIO und CDO dahinter steckt. So bezeichneten über 40 Prozent der CDOs ihr Verhältnis zum CIO als „distanziert“ oder „nicht existent“. Umgekehrt bewerteten über 60 Prozent der CIOs ihre Beziehung zum Chief Data Officer als „positiv“, also in ihrem Sinne. Aktuell berichten etwa 40 Prozent der CDOs an den CEO, über die Hälfte hingegen an die IT oder Leiter von Geschäftsbereichen.