Archiv für die Kategorie Datenmanagement

Massive Parallelität und das Lakehouse

Erstellt am: Mittwoch, 27. September 2023 von Anja Gorbach

Hinter einer massiv parallelen Architektur steckt das Prinzip, dass Daten nicht mehr nur auf einer Maschine liegen, sondern auf beliebig vielen.

Die Idee dahinter: Wollen mehrere Klienten auf die selben Daten zugreifen, werden die Daten entsprechend repliziert. Eine aktuelle massiv parallele Architektur ist das Lakehouse. Es verteilt die Daten nicht nur auf mehreren Maschinen, sondern erlaubt auch den direkten Zugriff auf die Daten.

Voraussetzung dafür ist, dass die Klienten ihre eigene Rechenleistung beitragen. In diesem System gibt es nämlich statt einer Datenbank, über die die gesamte Arbeit komplett mit teurer Rechenleistung abgewickelt wird, nur noch einen Data Lake als reinen und äußerst kostengünstigen Speicherplatz. In dieser neuen Architektur kann jeder Klient selbst in einem zentralen Register nach seinen Daten suchen und bringt die jeweils für die Abfrage notwendige Rechenleitung einfach mit. Daher verkraftet es das System sogar, wenn mehrere hundert Data Scientisten gleichzeitig darauf zugreifen.

In einem solchen Lakehouse können zudem problemlos polystrukturierte Daten gespeichert werden. Es stellt darüber hinaus mithilfe von Analytischen Tabellenformaten wie beispielsweise Apache Iceberg durchgängig sicher, dass diese stets konsistent sind. Auch wenn mehrere Klienten gleichzeitig auf dieselben Daten zugreifen, sie lesen oder ändern, besteht somit keine Gefahr eines korrupten Datenbestands. Zum Vergleich: Dies konnte der Bibliothekar nur garantieren, indem er darauf achtete, dass erst der eine liest und danach erst der andere eine Änderung vornimmt.

Für den Fall, dass ein Anwender nicht in der Lage ist, eigene Rechenleistung mitzubringen, oder Unterstützung für die Datenabfrage braucht, gibt es Dienste wie der von QUNIS-Partner Dremio. Sie stellen über eine Data Lake Engine bereits fertige Cluster zur Verfügung. Darüber kann beispielsweise ein Controller in seiner gewohnten Umgebung und auf einer anwenderfreundlichen Oberfläche so arbeiten, als würde er direkt auf die Datenbank zugreifen. Da diese Struktur ebenfalls massiv parallel aufgebaut ist, sind auch hier mehrere Zugriffe gleichzeitig möglich, ohne dass es zu Konflikten kommen kann.

Aus homogen wird heterogen

Die massive Parallelität geht unbestritten mit einer gewissen Komplexität einher. Vorher war die Welt homogen und dadurch relativ einfach: Es gab eine Lösung, eine Technologie, eine Datenbank und darüber ließen sich alle Probleme lösen. In massiv parallelen Strukturen hingegen muss sich jeder selbst um den Data Lake kümmern und zudem jedes Mal eigene Rechenleistung beisteuern.

Das kann man natürlich grundsätzlich als Nachteil ansehen. Heterogenität und Offenheit für unterschiedliche Technologien bieten aber auch Vorteile, wenn etwa mehrere Anwender im Zugriff auf dieselbe Datenbank problemlos völlig verschiedene Programmiersprachen nutzen können. In modernen datengetriebenen Unternehmen, in denen möglichst jeder Mitarbeiter mit Daten arbeiten soll, die in großer Zahl vorliegen, kommt man an einer solch hochskalierbaren Architektur ohnehin kaum mehr vorbei.

Schon länger bekanntes Prinzip

Massiv parallele Datenarchitekturen und Datenbanken gibt es übrigens schon seit den 1990er Jahren. Allerdings handelte es sich damals noch um rein proprietäre und dadurch sehr teure Technologien. Als Gamechanger zeigte sich die Mitte der 2010er Jahre die Entwicklung nichtproprietärer Technologien mit offeneren Architekturen. Jedoch waren diese für die meisten Unternehmen damals noch nicht so wichtig, weil häufig nur eine kleine Abteilung überhaupt mit Daten gearbeitet hat und auch die Datenmenge noch nicht annähernd so hoch war wie heute.

In den letzten Jahren hat sich dies enorm gewandelt: Mittlerweile will nahezu jeder Unternehmensbereich permanent Zugriff auf alle Daten sowie eigene Datenprodukte erstellen, selbstständig veröffentlichen und mit anderen teilen. Durch den stetig steigenden Bedarf waren die alten Architekturen daher ab einem gewissen Punkt nicht mehr tragfähig. Mit der Ablösung der teuren proprietären Systeme durch moderne Cloud Architekturen, ist die Einstiegshürde naturgemäß deutlich niedriger.

So kann man zum Beispiel über ein Cloud-basiertes Pay-as-you-go-Modell sehr komfortabel und dazu kostengünstig mächtige Technologien nutzen und muss nicht erst Millionen-Euro-Beträge in technologisch aufgerüstete Serverschränke investieren. Stattdessen greifen die Anwender einfach on-demand auf die Daten zu, wenn sie sie brauchen, fahren dann entsprechend die Rechenleistung hoch und zahlen auch nur genau dafür.

Mag die massive Parallelität als Konzept relativ statisch sein, ist doch der Markt überaus dynamisch. Das Konzept wird in allen Bereichen kontinuierlich weiterentwickelt – so entstehen immer wieder neue Angebote und damit spannende Möglichkeiten, die es bislang nicht gab und die die Unternehmen in Zeiten von Big Data gewinnbringend nutzen können.

MEDIA Central Group: Moderne Prozesse und neue Geschäftsmodelle

Erstellt am: Dienstag, 20. Juni 2023 von Anja Gorbach

Die MEDIA Central Group ist der ganzheitliche Lösungsanbieter für 360°-Angebotskommunikation. Auf Basis branchenweit einzigartiger Daten, eigener Expertise in der Datenanalyse sowie eines spezialisierten Netzwerks bietet die Firmengruppe maßgeschneiderte Lösungen für die cross-mediale Angebotskommunikation. Zusammen mit QUNIS etabliert die MEDIA Central Group eine gruppenweite Datenplattform, die immer mehr datengetriebene Entscheidungen, optimierte Prozesse und innovative Geschäftsmodell ermöglicht.

Statt im extrem dynamischen Technologieumfeld selbst lange Lernkurven
oder mögliche Sackgassen in Kauf zu nehmen, nutzen wir die langjährige
Projekterfahrung und den tiefen Einblick in die Produktstrategien der
Softwarehersteller, die QUNIS uns bietet.

 

Rafael de Brito
Head of Corporate IT
MEDIA Central Group

QUNIS begleitet die digitale Transformation

Als Spezialist für haptische Angebotskommunikation steuert MEDIA Central über 15 Milliarden Prospekte jährlich, dazu kommen Anzeigen, Print-Mailings, Out-of-Home- und Radio/TV-Werbung sowie immer mehr digitale Kanäle. Das Kunden-Portfolio umfasst mehr als 100 international tätige Unternehmen aller Branchen, darunter den Großteil des deutschen Einzelhandels. Die gezielte Auswahl der passenden Kanäle, der Werbeformen, Reichweiten und Zeitpunkte basiert zunehmend auf automatisierten Analysen und datengetriebenen Entscheidungen. Mit der Offerista Group, dem europaweit führenden Experten für digitale Angebotskommunikation, dem Data-Science-Spezialisten Yagora und der europaweit führenden Drive-to-Store Technologieplattform ShopFully sind dabei in den letzten Jahren drei ausgewiesene Digitalisierungsexperten zur Unternehmensgruppe gestoßen.

Die konsequent vorangetriebene digitale Transformation ist der wesentliche Erfolgsfaktor der wachsenden Unternehmensgruppe. Rafael de Brito, Head of Corporate IT der MEDIA Central Group, sieht darin zugleich auch eine zentrale Herausforderung:

Den Wandel zum datengetriebenen Unternehmen gezielt, effizient und mit nachhaltigem Erfolg zu steuern, erfordert in der dynamischen Branche des Unternehmens und bei rapider technologischer Entwicklung einen soliden strategischen Plan – und darüber hinaus die kompetente Beurteilung neuer Situationen, die sich zwangsläufig im disruptiven Markt- und Technologie-Umfeld immer wieder ergeben.

Organisationale Ambidextrie als Leitfaden der Transformation

Das Schlüsselwort der erfolgreichen digitalen Transformation lautet für Rafael de Brito „Organisationale Ambidextrie“: die Fähigkeit von Organisationen, gleichzeitig effizient und flexibel zu sein. Im betriebswirtschaftlichen Umfeld ist damit die Balance zwischen effizienter Nutzung des Bestehenden (Exploitation) und der Erkundung von Neuem (Exploration) gemeint.

Vorhandene Systeme und Prozesse zu vernachlässigen und sich kopflos in neue Technologien und Methoden zu stürzen, kann natürlich nicht der richtige Weg sein. Im komplexen und dynamischen Entwicklungsumfeld immer den Überblick zu behalten, richtungsweisende Entscheidungen zu treffen und diese dann kompakt umzusetzen, ist jedoch für die internen IT- und Digitalisierungsexperten neben ihrem Tagesgeschäft schier unmöglich.

Gerade weil die MEDIA Central Group hoch spezialisierte Digitalisierungsexperten und Data Scientists im Haus hat, können diese die Situation gut beurteilen und wissen, an welcher Stelle man sich komplementäres Know-how von außen dazu holen sollte, weil in diesem Falle „buy“ statt „make“ effektiver und ökonomischer ist. Die MEDIA Central Group setzt daher auf die Zusammenarbeit mit QUNIS. Der Spezialist für Data & Analytics begleitet die digitale Transformation des Unternehmens seit dem Jahr 2018 als Beratungs- und Implementierungspartner.

Rafael de Brito erklärt: „Statt im extrem dynamischen Technologieumfeld selbst lange Lernkurven oder mögliche Sackgassen in Kauf zu nehmen, nutzen wir die langjährige Projekterfahrung und den tiefen Einblick in die Produktstrategien der Softwarehersteller, die QUNIS uns bietet. Das bedeutet für uns strategisch gut untermauerte Projekte, effektive Implementierung und Best Practices für sichere Projekterfolge.“ Sein anschaulicher Schluss lautet: „So wie wir die Firmenfahrzeuge unserer Außendienstmitarbeiter weder selber bauen noch reparieren, so handhaben wir es auch mit dem Data Warehouse. Unsere Kernkompetenz liegt darin, die Technik zu nutzen, nicht das Rad neu zu erfinden.“

Komplettbegleitung in allen Fragen von Data & Analytics

QUNIS kam vor allem als Partner für die Infrastruktur und Prozesse eines gruppenweiten Data Warehouse ins Spiel, das nach allen Richtungen offen und skalierbar für beliebige Datenquellen und Use Cases angelegt wurde. Heute schätzt Rafael de Brito die umfassende Begleitung auf allen Ebenen von Data & Analytics: von der Strategie, dem DWH-Ausbau, BI- und Reporting mit Auswahl, Design und Schulung des Frontends, Anbindung von Datenquellen samt Schnittstellenprogrammierung bis hin zum smarten Aufbau von Datenmodellen aus wirtschaftlicher Sicht. Besonders effizient er die Zusammenarbeit durch die strukturierte und direkte Kommunikation:

“Wir nutzen QUNIS als verlängerte Werkbank. Für das Projektmanagement und die Abwicklung von Anforderungen müssen wir kaum Zeit und Ressourcen aufbringen, da verlassen wir uns auf unsere vorausschauende QUNIS-Beraterin.“ Auch den Wissenstransfer bei der Erstellung von Reports und der Nutzung des DWH nennt Rafael de Brito als Vorteil der Zusammenarbeit. So kann sich das interne Team schnell eigenes Know-how aneignen und im Unternehmen weitergeben.

Im Bereich des eingesetzten Frontends Power BI beispielsweise hat MEDIA Central heute eigene Experten für den Berichtsaufbau, profitiert aber weiterhin von der Beratung der QUNIS-Spezialisten und nimmt nach Bedarf sehr individuelle Schulungen für ausgewählte Nutzergruppen in Anspruch. Derzeit klärt das Projektteam zudem gemeinsam die Frage, ob die Datenmodellierung in Data Marts oder Data Sets die bessere Alternative für künftige Auswertungen in Power BI ist.

Immer mehr Daten erschließen

Eine wichtige Aufgabe von QUNS ist die kontinuierliche Einbindung interner und externer Datenquellen in die zentrale Plattform. Das betrifft zum einen verschiedene Themen- und Fachbereiche, die in den Datenpool eingegliedert werden. Aber auch bei der Integration neuer Gesellschaften in die wachsende Firmengruppe verfolgt die MEDIA Central Group das Ziel, dass die vorhandenen Systemlandschaften bestehen bleiben und die benötigten Daten in die zentrale Plattform überspielen. Also kein Umbau der wachsenden heterogenen Systemlandschaft, sondern ein neu entstehender zentraler Datenlayer, der Informationen aus diversen Quellen integriert und harmonisiert zur Auswertung – auch wiederum für die neuen Gesellschaften – bereitstellt. Den Kern-Anwendungsbereich bilden dabei die gruppenübergreifenden Finanzauswertungen.

So ist eine schnelle Eingliederung in die Firmengruppe möglich, ohne den laufenden Systembetrieb neu hinzukommender Gesellschaften zu stören. QUNIS übernimmt die Schnittstellenintegration, die Definition der Aufbereitung der Daten und die Edition der Lade- und Qualitätsprüfungsprozesse beim Datenload. Für das Finanzreporting und erweiterte Analysen in alle operativen Bereiche wurden bisher u.a. diverse ERP-Systeme der Tochtergesellschaften, das FiBu-System, ein DMS, das Geoinformationssystem, QS/QM-Daten sowie zugekaufte Marktdaten angeschlossen.

Gemeinsam die Komplexität und Dynamik erfolgreich meistern

In enger Zusammenarbeit sorgt das Projektteam für den kontinuierlichen Ausbau der Datenplattform und die organisatorische Verankerung der damit zusammenhängenden Prozesse. Für neue Datenquellen und Use Cases ist die skalierbare Daten- und Systemarchitektur dabei jederzeit offen. Rafael de Brito bringt den entscheidenden Mehrwert der Data & Analytics-Plattform auf den Punkt:

„Wir wollen einen Datenschatz aufbauen und neue Insights generieren, von denen sowohl unsere internen Prozesse und Geschäftsmodelle als auch unsere Kunden und Lieferanten profitieren.“

Für die Kunden bedeutet mehr Wissen ein sehr gezieltes Marketing mit genauen Erfolgskontrollen. Das gilt auch für die analogen Werbeformen wie die klassischen Papier-Prospekte. Umfangreiche Datenanalysen sorgen dafür, dass die logistische Steuerung der Prospekte punktgenau mithilfe von Geo-soziologischen und -ökonomische Analysen oder finanziellen Erfolgskontrollen erfolgt. Die Ergebnisse samt Umsatzanalysen können die Kunden u.a. in einem Qualitätsportal nachvollziehen.

Erfolgsgesteuerte selektive Werbung statt mit der Gießkanne, budget- und ressourcenschonend sowie transparent bis hin zu den Kunden und Lieferanten – die smarte Prospektsteuerung ist nur ein Beispiel für optimierte Angebote durch „data driven decisions“. Die MEDIA Central Group wird ihre datengetriebenen Geschäftsmodelle gezielt und kreativ weiter ausbauen. Dass QUNIS dafür der richtige Beratungs- und Implementierungspartner ist, steht für Rafael de Brito fest: QUNIS trägt wesentlich dazu bei, dass wir die Komplexität und Dynamik der digitalen Transformation der MEDIA Central Group erfolgreich meistern.“

Mehr zu MEDIA Central Group: Starke Marken für starke Kommunikationslösungen: Die MEDIA Central Group ist der ganzheitliche Lösungsanbieter für 360°-Angebotskommunikation. Auf Basis branchenweit einzigartiger Geo-Daten und der eigenen Expertise in der Datenanalyse erkennt die MEDIA Central Group übergeordnete Zusammenhänge und bietet Kunden maßgeschneiderte Empfehlungen für erfolgreiche Handelskommunikation. Die MEDIA Central Group versteht sich als Reichweitenmanager und bringt die Werbebotschaft ihrer Kunden zur richtigen Zeit zur richtigen Zielgruppe.

Die Gruppe vereint unter ihrem Dach den marktführenden Spezialisten für haptische Angebotskommunikation MEDIA Central, die europaweit führende Drive-to-Store Technologieplattform ShopFully, die europaweit führenden Experten für digitale Angebotskommunikation Offerista Group, die Data-Science-Experten für den Moment der Kaufentscheidung Yagora sowie die Auslandsgesellschaften MC Tschechien und MC Polen. Als Marktführer in der unadressierten Haushaltswerbung steuert MEDIA Central jährlich über 15 Milliarden Prospekte. Die Offerista Group ist Europas größtes Netzwerk für digitales Handelsmarketing und bündelt im eigenen Native Network über 1.400 Plattformen und Reichweitenpartner. Als Experten für den Moment der Kaufentscheidung analysiert und optimiert die Yagora Maßnahmen im Bereich Shopper Marketing und ermöglicht so die Steigerung der POS-Performance. Die Gruppe ist mit über 900 Mitarbeitenden an 21 Standorten vertreten und betreut heute Kunden in über 30 Ländern aus allen Branchen. Mehr Informationen: . https://corporate.media-central.de/

Mehr zu QUNIS StrategieberatungQUNIS Strategie

Microsoft Fabric – Data Driven in einer Technologie 

Erstellt am: Donnerstag, 1. Juni 2023 von Monika Düsterhöft

Microsofts konsequente Reise hin zur Datendemokratisierung 

Letzte Woche hat Microsoft auf der “Build-Konferenz” einige Neuerungen vorgestellt. Unsere Data & Analytics Ohren sind dabei natürlich insbesondere bei dem Thema “Microsoft Fabric” hellhörig geworden. Seitdem ist ein bisschen Zeit vergangen, die wir genutzt haben, das Neue von Microsoft einmal intern in unseren Innovation Labs und mit unseren Kunden zusammen genauer unter die Lupe zu nehmen. 

Alles unter einem Dach

Mit Microsoft Fabric wiederholt Microsoft sein Power BI-Erfolgsrezept und bündelt eine ganze Palette an Werkzeugen, auch aus dem Datenmanagement Bereich, unter einem neuen Dach. Das Dach heißt Microsoft Fabric.

Die Werkzeuge umfassen alles, was das Data (& Science)-Herz begehrt:  Data Integration, Data Engineering, Data Warehousing, Data Science, Real Time Analytics und Power BI selbst. Dabei sind die meisten Funktionen, die sich hinter diesen Diensten verbergen, nicht komplett neu in Azure, so ist in der Fabric Data Integration ein großes Stück Azure Data Factory zu finden, und auch das Data Engineering Feature hat die Besten Stücke rund um die serverless Spark Pools in Azure Synapse erhalten. 

Was auffällt ist die Einfachheit, mit der es Microsoft gelungen ist, all die Dienste im neuen Haus unterzubringen.

Das gelingt insbesondere durch zwei konsequent verfolgte Prinzipien:

  • SaaS überall! Der Fokus bei Microsoft Fabric ist auf Software-as-a-Service (SaaS) ausgelegt. Das heißt: Kein händisches verwalten von Servern! 
  • Ein gemeinsamer Standard: Onelake & Delta Lake. Alle Daten in Microsoft Fabric (ja, auch die im „Warehousing“ Bereich), werden in Onelake als Delta Tabellen gespeichert. Das ermöglicht den nahtlosen Wechsel von Werkzeugen in Microsoft Fabric basierend auf dem immer gleichen Daten & Zugriffen, die durch Onelake sichergestellt werden. Wir hoffen in Zukunft auch noch auf die Unterstützung von Iceberg. 

Neben der ganzen Nutzerfreundlichkeit und Einfachheit mit der Microsoft die Dienste im Fabric bündelt, gibt es zudem ein paar handfeste technologische Neuerungen:  

Mit „Direct Lake“ ist es nun möglich Dateien auf dem Lake aus Power BI abzufragen, OHNE dass wir zusätzlichen Compute wie z.B. Synapse Serverless benötigen oder etwa die Datasets regelmäßig aktualisieren müssen, um ein maximal performantes Nutzererlebnis durch importierte In-memory-Daten zu ermöglichen. Etwas ähnliches hat Tableau & Databricks über Delta Share zwar schon vor zwei Jahren angekündigt (Link), allerdings ist die Funktion bis heute nicht öffentlich verfügbar. Danke Microsoft für dieses Schmankerl! 

Auch Onelake fällt in eine Box, für die wir in unserem Beraterlager noch gar kein Label haben: Während Onelake viele aus dem Azure Data Lake Store Gen 2 (ADLS Gen 2) bekannte Funktionen mitbringt, hat auch hier Microsoft nochmal einen draufgesetzt: Es ist nun möglich mit dem altbekannten „abfss“-Treiber über OneLake nicht nur auf Daten in der Azure Cloud zuzugreifen und den Zugriff zu steuern, sondern sogar verbundene S3 Buckets können abgefragt werden. Für Abfragewerkzeuge innerhalb des Fabrics ist zusätzlich auch Row- und Columnlevel Security angekündigt. Das dies nur innerhalb des Fabrics funktioniert ist zwar schade, aber aus technischer Sicht absolut nachvollziehbar. 

Mit Fabric entwickelt sich Microsoft in die absolut richtige Richtung

Die Einfachheit mit dem Microsoft es schafft die Komplexität aus den verschiedensten Data Domänen zusammenzubringen hat uns wirklich beeindruckt. Damit rücken insbesondere alle Themen rund um Data Engineering ein gutes Stück näher an den Großteil der Datennutzer in Unternehmen. Und während das natürlich keine Ausrede für unsauberes Datenmanagement ist, kann Transparenz und Einfachheit gerade im Bereich Daten gar nicht hoch genug bewertet werden. 

Early Adopters aufgepasst: Aktuell gibt es noch viele Features die zwar angekündigt, allerdings aktuell noch nicht verfügbar sind. Das fällt uns bei der No-code-Komponente Data Activator deutlich einfacher als mit der fehlenden Zugriffssteuerung auf Tabellenebene.  

Unser Tipp: Wenn Sie mehr über Fabric wissen wollen, folgen Sie uns auf LinkedIn und Xing oder abonnieren Sie einfach unseren Newsletter. Wir bleiben an der Fabric dran und halten Sie über unsere Erkenntnisse und Learnings informiert.

Die neueste SAP-Evolution im Bereich Data & Analytics: SAP Datasphere

Erstellt am: Donnerstag, 13. April 2023 von Anja Gorbach

Aus SAP Data Warehouse Cloud wird SAP Datasphere! Was steckt hinter dem neuen Release? Bloß ein neuer Name – also anders ausgedrückt reines Marketing – oder verbirgt sich mehr hinter der neuesten Evolution aus dem Hause SAP?

Am 8. März 2023 launchte SAP Datasphere im Rahmen von SAP Data Unleashed, einem virtuellen Event rund um Neuerungen im Kontext Data & Analytics. Auch auf den diesjährigen DSAG-Technologietagen am 22. und 23. März in Mannheim war Datasphere eines der Hot Topics. Und so viel vorneweg: Die Neuausrichtung seitens SAP verspricht einiges und Datasphere bietet bereits einige spannende neue Features.

Werfen wir aber zunächst nochmal einen Blick zurück. Die Entwicklung der Data Warehouse Cloud (DWC) in den letzten anderthalb Jahren war wirklich rasant. Mit jedem neuen Release spürte und spürt man die Intensität und Manpower, mit denen hinter den Kulissen an neuen Features und der Verbesserung bestehender Funktionalitäten gearbeitet wird.

Auf einige der aktuellsten Neuerungen im Rahmen der Umbenennung zu Datasphere werde ich später noch genauer eingehen. Einen detaillierten Blick auf die neue strategische Data Warehousing Lösung von SAP hatte ich bereits in einem früheren WHITEPAPER: SAP Data Warehouse Cloud  – DAS neue strategische Data Warehouse der SAP gegeben.

In der Praxis zeigte sich in den letzten Monaten, dass die DWC insbesondere beim Thema Datendemokratisierung ein sehr interessanter und relevanter Baustein für Unternehmen werden kann. Durch die zentralen Elemente der Spaces, Sharing-Optionen zwischen den unterschiedlichen virtuellen Bereichen sowie Data Access Controls als wichtige Governance-Elemente auf der einen Seite und der Möglichkeit, Modelle auf Basis eines grafischen Editors zu erstellen. Auf der anderen Seite, ergeben sich mitunter komplett neue Möglichkeiten in der Zusammenarbeit zwischen IT und Business.

Ein Tool alleine ermöglicht natürlich keine Datendemokratisierung im Unternehmen – die technischen Möglichkeiten erfordern immer auch das Vorhandensein von Datenkompetenz innerhalb der involvierten Bereiche (Data Literacy) sowie klar definierte Data & Analytics-Rollen.

Die Agilität sowie die leichte und intuitive Bedienbarkeit bei der Erstellung neuer analytischer Modelle beziehungsweise semantischer Sichten auf vorhandene Datensets sind in der agilen und schnelllebigen Business-Welt ein absoluter Unterscheidungsfaktor im Analytics-Umfeld. Auf der anderen Seite wurden auch die Möglichkeiten aus Entwicklersicht stark erweitert. Ein Beispiel ist hier das Command Line Interface (CLI).

Seit einiger Zeit ist es über das DWC-CLI möglich, gewisse manuelle und vor allem wiederkehrende Tätigkeiten beim Administrieren des Tenants, der Userverwaltung oder dem Erstellen von Tabellen und Views mithilfe der Kommandozeile programmatisch zu lösen – oder besser gesagt zu automatisieren. Das DWC-CLI ist technisch gesehen ein eingeständiges Node.js-Modul. Voraussetzung ist die Installation der letzten node.js-Version auf dem Client. Mithilfe des CLI lassen sich lästige und wiederkehrende Mehrfacharbeiten in der UI reduzieren und wie bereits erwähnt automatisieren – und letztendlich auf diese Weise auch standardisieren.

Seit der Einführung der DWC wurden neue Innovationen im Bereich Data & Analytics nach und nach nur noch im neuen Cloud-Service integriert; ein Beispiel ist hier der Data Marketplace, der mittlerweile etliche Datenmodelle von Drittanbietern bereitstellt.

Ebenso hat man als Unternehmen die Möglichkeit, eigene Datenprodukte nach draußen zu verteilen. Hier denke man zum Beispiel an Lieferanten oder enge Partner, mit denen auf diese Weise noch enger kooperiert werden kann. Sogar innerhalb eines Unternehmens lässt sich der Marketplace nun einsetzen, um beispielsweise Datenprodukte an die eigenen Fachbereiche auszuliefern.

SAP Datasphere – auf dem Weg zur „Business Data Fabric“

Werfen wir nun einen genaueren Blick auf die neueste Evolutionsstufe im Data & Analytics-Portfolio von SAP. Was verbirgt sich hinter dem Begriff Datasphere? Zunächst einmal ändert sich für DWC-Kunden nicht sonderlich viel: Das Look&Feel des Tools ist gleich geblieben, lediglich der Name wurde ausgetauscht und bereits einige neue technische Features hinzugefügt.

Mit Datasphere möchte SAP den Data Fabric Ansatz stärker verfolgen und spricht in dem Zusammenhang nun von einer „Business Data Fabric“. Aber was versteht SAP eigentlich unter diesem Begriff?

SAPs Definition der Business Data Fabric ist im Kern eine Datenmanagementarchitektur für einen virtuellen oder persistierten semantischen Daten-Layer über der darunterliegenden Datenlandschaft (Beispiele: zentrales DWH, Lakehouse, MES- beziehungsweise Produktionsdaten, IoT-Daten etc.) eines Unternehmens. Die Basis für dieses Vorhaben soll mit SAP Datasphere und einem offenen Daten-Ökosystem, das im Zuge einiger strategischen Partnerschaften mit unter anderem Databricks, Collibra, Confluent und DataRobot angekündigt wurde, geschaffen werden. Das grundlegende Ziel, das SAP hiermit verfolgt, ist, einen skalierbaren und einheitlichen Datenzugriff ohne Datenduplikationen im Unternehmen zu ermöglichen.

Als Grundlage einer Business Data Fabric bringt Datasphere sämtliche Funktionalitäten eines modernen Data Tools mit, angefangen vom Datenzugriff via Self-Service & Data Discovery bis hin zur Datenintegration sowie Governance & Security. Data Warehousing, Virtualisierung, die semantische Modellierung von Businesslogik sowie Orchestrierung und Processing als zentrale Datenmanagementaufgaben gehören ebenso zum Funktionsumfang.

Auf dem Weg zum vollumfänglichen Data Tool 

Wer sich bereits mit der DWC beschäftigt hat, wird merken, dass dies nun erstmal nichts Neues ist, denn auch die DWC verfügte schon über die genannten Funktionalitäten. Rein technisch ist Datasphere daher aktuell vielmehr als das neueste Release der DWC zu interpretieren. Dennoch gibt es einige Neuigkeiten. die den Weg der der SAP Datasphere zum vollumfänglichen Data Tool aufzeigen.  Im Folgenden habe ich einige dieser Neuerungen für Sie aufgelistet:

Neue Datenintegrationsmöglichkeiten mit dem Cloud-basierten Replication Flow
Der Replication Flow ist ein Data Intelligence Feature, das nun in Datasphere integriert wurde. Mit der Komponente kann man eine Cloud-basierte Datenreplikation ohne Transformationslogik durchführen und somit große Datenmengen von A nach B bewegen. Ebenso unterstützt der neue Replication Flow den Change Data Capture (CDC). Stand heute ist der Funktionsumfang noch stark eingeschränkt. So stehen derzeit als Ziel beispielsweise lediglich SAP Datasphere, HANA Cloud und HANA Data Lake zur Auswahl. Es wurde jedoch angekündigt, dass zukünftig für den Replication Flow auch Third-Party-Applikationen als mögliches Ziel angeboten werden.

Neues analytisches Modell
Mit dem neuen Artefakt für die semantische Datenmodellierung hat SAP deutlich mehr Modellierungsmöglichkeiten geschaffen. Es ist nun in Datasphere möglich, ein auf die Anforderungen des Business abgestimmtes und optimiertes semantisches Datenmodell mit Variablen, eingeschränkten Kennzahlen und Filtern für die SAC bereitzustellen. Darüber hinaus bietet das neue analytische Modell eine wirklich sehr hilfreiche Datenvorschau bei der Modellierung und eine verbesserte Integration mit der SAC bei der späteren Nutzung.

Nächster Schritt Richtung Datendemokratisierung und Governance mit dem neuen Catalog
Mit Datasphere hat SAP nun auch einen Data Catalog gelauncht. Über den Catalog Crawler werden die Metadaten aus Datasphere automatisch in den Catalog geladen, ebenso lassen sich zusätzlich SAC-Instanzen mit wenigen Klicks integrieren.

Über den Catalog und dessen Suchfunktion kann man seinen Business Usern jetzt einen sehr guten Überblick über die verfügbaren Datenprodukte geben, KPIs definieren, kategorisieren und in den Assets pflegen sowie Business Terms in Form eines Glossars definieren. Über die Lineage lassen sich so schnell und einfach die Views und Tabellen in Datasphere ausfindig machen, auf die beispielsweise ein Report in der SAC auf Basis eines analytischen Modells aufsetzt.

Auf dem Data & Analytics Forum im Juni 2022 kündigte SAP das Projekt „SAP Data Suite“ an. Mit Datasphere präsentiert das Unternehmen aus Walldorf nun die ersten Ergebnisse.

Wenn die Entwicklung der neuen Data Suite von SAP mit der gleichen Geschwindigkeit wie in den vergangenen Monaten weitergeht, sind wir sehr optimistisch, dass die aktuell noch bestehenden Funktionslücken Schritt für Schritt geschlossen werden.

Beispielsweise verspricht der Blick auf die Roadmap im Laufe des Jahres eine nahtlose Integration der SAC-Planung mit Datasphere und die Erweiterung des neuen Catalogs hinsichtlich der Anbindung zusätzlicher SAP-Quellen. Ebenso soll es zukünftig möglich sein, User pro Space unterschiedlich zu berechtigen. Auch das analytische Modell wird weiter ausgebaut und um Multi-Fact sowie weitere Modellierungsfunktionen erweitert.

Aber es gibt auch noch genügend Themen, die dringend angegangen werden müssen. Insbesondere beim Thema Life-Cycle Management – Stichwort CI/CD – hat SAP Datasphere aktuell noch keine wirklich zufriedenstellende Antwort zu bieten.

Die Data & Analytics Zukunft mit SAP liegt in der Cloud

Erstellt am: Freitag, 20. Januar 2023 von Monika Düsterhöft

In der SAP-Strategie ist seit einiger Zeit ein klarer Trend zu Cloud-only festzustellen. SAP Datasphere kommt dabei eine zentrale Rolle zu.

Zusammen mit der SAP HANA Cloud, der SAP Analytics Cloud (SAC) und der SAP Data Intelligence Cloud bildet SAP Datasphere das Data-to-Value-Portfolio von SAP. Die SaaS-Applikation Datasphere ermöglicht es Unternehmen, sich dabei ganz auf ihre Analytics-Aktivitäten zu konzentrieren.

Mit SAP Datasphere können sowohl Cloud- als auch On-Premise-Datenquellen integriert werden. Die Komponente Data Flow bietet zudem ETL-Funktionalitäten, um Daten aus unterschiedlichsten Quellen zu extrahieren, zu transformieren und schließlich in lokalen Tabellen Datasphere zu speichern. Darüber hinaus gibt es mit dem Data Builder und dem Business Builder zwei separate Bereiche zur Datenmodellierung in Datasphere, und sie stellt einige Business-Content-Datenmodelle bereit, die mit wenigen Klicks für Standardanwendungsfälle verfügbar gemacht werden können.

Komfortabel zum „Data-Shopping“

Mit Dataspehre versucht SAP zudem, einen entscheidenden Schritt in Richtung Self-Service Data Warehousing zu gehen. Hierbei hat die IT weiterhin die Hoheit und Verantwortung für einheitliche, standardisierte Datenmodelle. Zugleich bekommt sie aber Unterstützung im Datenmanagement, denn der Fachbereich kann den letzten Schritt in Richtung Reporting allein und selbstständig machen.

Richtig umgesetzt erhöht dies die Agilität und beschleunigt die Analytics-Entwicklungen in den Unternehmen. Im Sinne eines „Data-Shopping“-Erlebnisses stehen den Endanwendern die Daten in einer einfachen, geführten Form zur Verfügung: Wiederverwendbare analytische Datenmodelle können verschiedene Geschäftsfragen beantworten.

Datasphere und SAC in kraftvoller Verbindung

Die Offenheit der Applikation basiert auf der Kombination mit der SAC als sogenanntem First-Class Consuming Citizen. Mit wenigen Klicks ist die Verbindung zwischen Datasphere und der SAC eingerichtet, dadurch lassen sich nachfolgend die Daten der freigeschalteten analytischen Datenmodelle von Datasphere per Live-Verbindung nutzen.

Ebenso können die Anwender aber auch mit Third-Party-Tools wie Tableau oder Microsoft Power BI auf die Daten zugreifen. Nicht zuletzt soll Datasphere künftig als zentrale Datendrehscheibe für Planungsszenarien in Kombination mit der SAC inklusive einer Retraktion von Forecast und Plan-Daten Richtung Dataspehre etabliert werden. Langfristig soll außerdem die Datasphere Verwendung auf allen gängigen Hyperscalern möglich sein.

Perfekte Symbiose

Da SAP den Service Datasphere als SaaS zur Verfügung stellt, müssen sich Kunden nicht mehr selbst um Produkt-Updates und neue Releases kümmern – gleichzeitig gewährleistet das automatische und zentrale Updaten durch SAP eine permanente Verbesserung und Optimierung des Produkts. Das neue Space-as-a-Service-Konstrukt macht zudem isolierte Einheiten oder auch separierte logische Layer in der Datasphere möglich.

Ein weiterer interessanter Aspekt: End-User können mithilfe des Business Builders selbstständig Business Entities für das Reporting erstellen. Über die Verknüpfung mit der SAC schafft die Einheitlichkeit von User Interface und Usability der beiden Applikationen eine perfekte Symbiose. Daher stellt sich die SAC zum Konsumieren von Datasphere-Datenmodellen als Frontend-Tool der Wahl dar.

Mein Tipp: Einen detaillierten Tool-Steckbrief zur SAP Analytics Cloud (SAC) und zu Microsoft Power BI sowie weitere spannende Learnings rund um das Thema Self Service BI und wie Sie damit Agilität im Fachbereich realisieren, finden Sie in der aktuellen Studie von the factlights.  STUDIE KOSTENFREI HOLEN

Zusammenspiel von Self Service- und Enterprise BI

Erstellt am: Freitag, 9. September 2022 von Monika Düsterhöft

BI-Werkzeuge punkten mit Benutzerfreundlichkeit im Frontend und Funktionalitäten für das Datenmanagement 

Der Siegeszug der Self Service-BI (SSBI), der in den letzten fünf Jahren verstärkt zu beobachten ist, lässt sich nicht zuletzt mit den in dieser Zeit auf den Markt drängenden neuen benutzerfreundlichen und skalierbaren BI-Werkzeugen in Verbindung bringen.

Diese umfassen in der Regel nicht nur ein schickes Frontend sondern auch Funktionen zur Erledigung einfacher Datenmanagementaufgaben. Sie erlauben es Nutzern selbstständig verschiedene Datenquellen zu verbinden, lokale Daten aus Excel-Dokumenten im Visualisierungstool zu integrieren oder Daten direkt aus dem Internet heraus anzuzapfen und so Unternehmensdaten einfach und schnell sowie weitgehend unabhängig von der IT-Abteilung auszuwerten.

Wenig verwunderlich nennen die Teilnehmer der aktuellen Studie von the factlights als ihre Top-3-Anwendungsfälle von SSBI die schnelle und individuelle Anpassung von Visualisierungen, die Abdeckung von zusätzlichen Informationen aufgrund von Individualbedarfen sowie die Zusammenführung von Daten aus mehreren Quellen.

Dabei wird SSBI von den Befragten nicht als eine ausschließliche Lösung, sondern vielmehr als integraler Bestandteil einer modernen Datenarchitektur verstanden. 9 von 10 der Befragten gaben an, ein Data Warehouse im Einsatz zu haben.

Clevere Kombination aus SSBI und Data Warehouse

Im Hinblick auf den verwendeten Technologie-Stack und das damit realisierte Zusammenspiel von SSBI und einem Data Warehouse lassen sich bei den Befragten vor allem drei verschiedene Architekturen identifizieren:

1. SSBI eigenständig, mit anderem Technologie-Stack als Enterprise BI

SSBI wird als eigenständige Lösung parallel zum Data Warehouse / Lakehouse betrieben. Als Datenbasis dienen vom Fachbereich erstellte und verwaltete Datenbanken. Das BI-Frontend-Tool orientiert sich nicht an den unternehmensweiten Vorgaben. Die SSBI Lösung läuft damit autark vom zentralen und qualitätsgesicherten Data Warehouse / Lakehouse sowie weitestgehend unkoordiniert.

2. SSBI eigenständig, mit gleichem Technologie-Stack wie Enterprise BI

SSBI wird als eigenständige Lösung parallel zum Data Warehouse / Lakehouse betrieben. Als Datenbasis dienen vom Fachbereich erstellte und verwaltete Datenbanken. Als Technologie wird das unternehmensweit verabschiedete BI-Frontend-Tool verwendet. Obwohl die SSBI Lösung nicht auf dem zentralen und qualitätsgesicherten Data Warehouse / Lakehouse aufsetzt, werden möglichst viele Synergien verwendet und SSBI in koordinierter Art und Weise betrieben.

3. SSBI aufbauend auf dem Data Warehouse / Lakehouse

Architektonisch und technologisch ist SSBI vollständig in die Architektur integriert. SSBI baut auf dem vorhandenen Data Warehouse / Lakehouse auf und verwendet dessen qualitätsgesicherte Datenbasis. Zusätzlich besteht die Möglichkeit, externe Daten zu ergänzen und diese zusammen mit den Daten des Data Warehouse / Lakehouse zu verwenden. Als Technologie wird das unternehmensweit verabschiedete BI-Frontend-Tool verwendet.

Nachhaltigen Erfolg bringt SSBI, wenn es nicht als Silo aufgebaut wird 

Die drittgenannte Architektur-Variante versteht die SSBI-Lösung nicht als technologisch eigenständig, sondern setzt diese sozusagen als „Disziplin“ auf ein bestehendes Data Warehouse auf. Sie verwendet Technologien, die sich in die Gesamtarchitektur einfügen. Diese Architektur ist vor allem beim Reifegrad der Frontrunner verbreitet und gilt damit als am erfolgreichsten. Zudem stellt the factlights fest, dass Anwender zufriedener sind, je integrativer SSBI in der Gesamtarchitektur umgesetzt ist.

Als probates Beispiel, wie mit einer SSBI-Lösung gestartet und diese zu einer integrierten Lösung weiterentwickelt werden kann, gilt der QUNIS-Ansatz der Scalable Self-Service BI.

Mein Tipp: Noch mehr Learnings, Extra Notes zu Organisation und Rollen sowie viele spannende Info-Grafiken und Tool-Steckbriefe zu Microsoft Power BI und zur SAP Analytics Cloud (SAC) finden Sie in der the factlights Studie „ Self Service BI – Agilität für den Fachbereich“.  STUDIE KOSTENFREI HOLEN

Digital Workplaces, Data Literacy, Cloud, Data Catalogs und mehr – das bewegt die Data & Analytics-Welt

Erstellt am: Dienstag, 31. Mai 2022 von Monika Düsterhöft

Das Thema Data & Analytics hat deutlich an Fahrt aufgenommen: Die Initiale für Projekte und Initiativen sind dabei so vielfältig wie nie zuvor. Die Herausforderungen und Antworten darauf ebenso.

Viele Organisationen stellen sich aktuell IT-seitig komplett neu auf

Aus selbst definierten strategischen Gründen oder auch weil technische Erweiterungen von Softwareherstellern eine komplett neue Ausrichtung erfordern. Dabei wird kaum noch monolithisch alles einer einzigen, zentralen Strategie unter­geordnet. Stattdessen eröffnen sich heterogene Welten beispielsweise mit Cloud-Angeboten, Spezialapplikationen unter anderem für Product-Lifecycle-Management oder Firmendatenbanken wie etwa Produktinformationssysteme.

Diese Entwicklung erfordert angesichts der Vielfalt und Komplexität der Aufgaben im Kontext von Data & Analytics umso mehr feste Konzepte für das Stamm- und Metadaten-Management. Schließlich gilt es, jederzeit den Überblick zu bewahren und Transparenz zu gewährleisten.

Ebenso geht nicht erst seit, aber forciert durch Corona der Trend hin zum verteilten Arbeiten. Sogar Unternehmen, die sich vor nicht allzu langer Zeit noch dagegen gesperrt haben, stellen mittlerweile Digital Workplaces bereit. Auch hier spielt die Cloud eine zunehmend wichtige Rolle, um den mobilen Zugriff auf die Systeme etablieren und von der Infrastruktur her überhaupt ausrollen zu können. Über die Technologie hinaus erfordert dies vielfach neue Konzepte und Handlungsweisen.

Zudem betrifft die Digitalisierung die unterschiedlichsten Bereiche in einem Unternehmen – ob in der Kommunikation, im Vertrieb, dem Kundenservice oder der HR-Abteilung. Neben dem elementaren Organisationsmanagement, das die Struktur des „Gesamtkonstrukts Digitalisierung“ steuern und optimieren soll, benötigen diese Transformations- oder vielmehr Veränderungsprozesse immer auch ein gutes Change Management. Denn nicht nur die Prozesse müssen stimmen, sondern die Menschen dahinter müssen abgeholt und mitgenommen werden, um die veränderten Prozesse dauerhaft und erfolgreich im Unternehmen zu etablieren.

Damit einher geht auch der steigende Bedarf an Kompetenzen, dem sogenannten Upskilling. Die zunehmend digitalisierte Arbeitswelt erfordert abteilungsübergreifende Kompetenzerweiterungen; das gilt für den IT- und Technik-Bereich, aber auch in Marketing & Kommunikation und erstreckt sich ebenso über Anforderungen wie Mitarbeiterentwicklung, Problemlösungskompetenzen oder Konfliktmanagement bzw. Teamwork. Das alles muss bedacht und umgesetzt werden, da sonst Digitalisierungsinseln entstehen und ein Scheitern des ganzheitlichen Ansatzes vorprogrammiert ist.

Datenlandschaften gehören erweitert, sichere Zugänge gewährleistet

Immer bedeutender werden die sogenannten Digitalen Zwillinge oder auch Digital Twins. Dabei handelt es sich um digitale Nachbauten von physischen Objekten, Produkten und Services. Diese müssen in die Prozesslandschaften integriert werden, damit Simulationen und Forecasts rein digital stattfinden können – interessant ist dies beispielsweise für Produktentwicklung oder Qualitäts­management.

Die Daten als erfolgsentscheidendes Asset zu begreifen und entsprechend zu nutzen, bedeutet in der Konsequenz: Alle Mitarbeiter müssen im Sinne von Data Literacy (ein neu aufge­kommenes Buzzword) möglichst einfachen Zugang zu den Daten haben – und dies umso mehr an den Stellen, an denen sie Potenzial zu einem echten Mehrwert mitbringen. Das zu ermöglichen, zeigt sich als weiterer Treiber für Data & Analytics-Projekte.

Durch all dies zieht sich der effiziente und nachhaltige Schutz der Daten wie ein roter Faden. Dabei geht es sowohl um alltägliche Dinge wie Zugriffsrechte als auch um heikle Themen, Stichwort Cyber-Kriminalität. Hier stellt der Gesetzgeber teils klare Forderungen. Vor diesem Hintergrund sind deutlich strukturiertere Vorgehensweisen erforderlich, als sie bislang vielerorts praktiziert wurden.

Das gilt ganz speziell für das Umfeld von Data & Analytics, wo aus bloßen Daten wahre Daten­schätze entstehen und zu schützen sind. Gerade in Cloud-Umgebungen muss man genau hinsehen, wo genau und wie die Daten gespeichert werden und wer Zugriff darauf hat.

Datengetriebene Produkte und Services schüren Innovationskraft

Sah es noch vor einem Jahr n ganz anders aus, so werden heute bei uns viel mehr Add-Ons zu den Bestands­produkten, Erweiterungen zu bestehenden Devices oder auch Zusatzservices und Dienstleistungen nachgefragt. Dieser Trend zur Anbindung von Geräten zeigt sich auch im privaten Umfeld, wo sich mittlerweile der Kühlschrank, die Heizung, das Auto und anderes mehr problemlos mit dem Internet verbinden lassen.

Viele Unternehmen wollen darüber ihr bisheriges Business-Modell von Verkaufen auf Vermieten umstellen, um so neuen Marktanforderungen gerecht zu werden. Auch hier entstehen große Mengen an hochwertigen Daten, die in der Analytics-Welt gewinnbringend genutzt werden können. Ein Beispiel von vielen: In unseren Kundenprojekten nehmen wir verstärkt einen Trend zur Produktindividualisierung wahr.

Hierfür stehen die Organisationen jedoch vor der Herausforderung, möglichst genau zu wissen, an welcher Stelle sie mit der Individualisierung ansetzen können und inwieweit dies überhaupt lohnenswert ist. Die notwendigen Daten dafür liefern Data & Analytics.

Technologie wird zum Service

Es zeichnet sich ganz allgemein eine Entwicklung dahingehend ab, dass die technologischen Konzepte, die in den vergangenen zehn bis fünfzehn Jahren gut funktioniert haben, in unseren zunehmend dynamischen Zeiten an ihr Limit stoßen: Aktuelle Herausforderungen erfordern moderne und innovative Methoden und Werkzeuge. Unternehmen müssen daher konkrete Über­legungen über ihre künftige Ausrichtung anstellen.

In diesem Kontext wird Technologie zum Service. So gehen derzeit zwischen 70 und 80 Prozent aller neu begonnenen Projekte von QUNIS in Richtung Cloud-orientierter Nutzung von Services. Die Organisationen bauen nicht mehr inhouse Technologien auf, sondern verwenden teils komplette Softwarelösungen verschiedener Cloud-Anbieter als Managed Services. Dabei wird je nach Anwendungsfall sehr häufig auch auf hybride Architekturen gesetzt, bestehend aus der Kombination von Cloud- und On-Premise-Systemen.

Generell jedoch ist festzustellen, dass Cloud-Architekturen nicht mehr nur auf dem Vormarsch sind, sondern speziell in der Data & Analytics-Welt sogar überwiegen.

Oft nämlich könnten die Unternehmen die angebotenen Services gar nicht eigenständig betreiben, weil ihnen die erforder­lichen Ressourcen und das entsprechende Know-how für die teils sehr komplexen Technologien fehlen. War es beispielsweise in früheren Zeiten noch mit dem Aufbau eines kleinen Data Ware­houses getan, sind heute deutlich mehr Spezialtechnologien notwendig wie etwa Machine-Learning-Algorithmen.

Immer mehr Daten werden in zunehmend mehr Anwendungsfällen verarbeitet. Aufgrund dessen wird eine nochmals verbessere Usability für die Nutzer mit möglichst niedrigen Eintritts­hürden schlichtweg erfolgsentscheidend bei der Anwendung der unterschiedlichen Technologie­produkte.

Hier bewähren sich Business-Glossars und Data Catalogs, mit denen sich die zunehmenden Datenvolumina automatisiert ordnen und vereinheitlichen lassen. Metadaten-Management-Lösungen können dabei helfen, mit den Daten und modellierten Inhalten besser und unkomplizierter zu arbeiten.

Data & Analytics wächst und weitet sich aus

Branchenübergreifend zeigt sich, dass Organisationen fachlich gesehen mit immer heterogeneren Datenformaten umzugehen haben, um daraus ihre Erkenntnisse zu gewinnen. Dazu zählen im Kontext von Data & Analytics beispielsweise Sensordaten und Texte, aber auch Bild- und Audio-Material.

Gleichzeitig werden die Anwendungsfälle tendenziell businesskritischer. Bislang beispielsweise war ein kurzfristiger Ausfall des BI-Systems nicht sonderlich problematisch, weil es nicht direkt relevant für die operative Ebene war, sondern lediglich steuernd und informativ. Heute hingegen greifen wir hierüber in Echtzeit tief in die Prozesse hinein und generieren Erkenntnis­gewinne für die operative Steuerung etwa von Produktions- oder Logistikprozessen oder hinsichtlich der Up- und Cross-Selling-Potenziale von Webshops.

Zudem verzeichnen wir stetig komplexere Self-Service-Anforderungen. Die Nutzer möchten etwa nicht mehr nur schnell ein einfaches Dashboard selbst bauen. Sie fordern vielmehr techno­logische Strukturen, um über den Self-Service-Ansatz beispielsweise Massendaten selbstständig auswerten zu können. Da es ihnen hierbei jedoch an der jahrelangen Erfahrung echter Experten mangelt, entsteht entsprechender Anleitungsbedarf – dabei müssen Standardisierung und Harmoni­sierung natürlich jederzeit gewährleistet bleiben.

Wahl der Plattform wird zweitrangig

Bei der Wahl der Infrastruktur gibt es für Unternehmen verschiedene Optionen: On-Premise, Public Cloud in Form von PaaS und SaaS oder Container-Strategien. Häufig nutzen Unternehmen auch eine Multi-Cloud-Strategie mit mehr als nur einem Hyperscaler. Eine wichtige Rolle spielt hier die Portierbarkeit, damit zu jeder Zeit die Flexibilität erhalten bleibt, den Cloud-Anbieter gegebenenfalls problemlos wechseln zu können. Alternativ entscheiden Organisationen sich von vornherein für eine hybride Lösung aus Cloud und On-Premise.

Nicht zuletzt wird die Rolle von Open-Source-Technologie zunehmend bedeutender. In der klassischen BI-Welt weniger eingesetzt, kommt sie im Umfeld von Streaming, Big Data, Machine Learning sowie bei Prozessen auf Basis von Massendaten jetzt verstärkter zum Einsatz – mit dem Potenzial, den Markt nahezu zu dominieren.

Data Management Units zur Umsetzung Ihrer Datenarchitektur 

Das Thema Architektur und wie sich Architekturen verändern kann man derzeit als klaren Trend am Markt erkennen. In diesem Zusammenhang bieten wir bei QUNIS je nach der Zielsetzung, die Unternehmen mit ihrer jeweiligen Data & Analytics-Strategie verfolgen, sogenannte Data Management Units (DM Units) an. Diese bilden das Herzstück der Datenverarbeitung und -speicherung bei Data & Analytics-Initiativen.

Mit Self-Service-BI, Data Warehouse, Data Warehouse & Data Lake, Lakehouse und Streaming stehen insgesamt fünf DM Units mit einem jeweils unterschiedlichen Leistungsspektrum zur Verfügung.

Welche DM Unit für ein Unternehmen infrage kommt, hängt dabei immer von der Ausrichtung der künftigen Architektur ab. Die Entscheidung darüber sollte stets vorab getroffen werden, weil sich etwa die eher pragmatische Variante Self-Service-BI im Nachhinein nicht so schnell in ein komplexeres Lakehouse umwandeln lässt. Mit verschiedenen Add-Ons lassen sich die zentrale Datenspeicherung und -verarbeitung der DM Units modular um zusätzliche Funktionen erweitern. In jedem Fall notwendig sind Visualization & Reporting, Monitoring und Process Control, hinzu kommen optionale, teils kombinierbare Add-Ons wie beispielsweise für API, Virtualisierung oder Metadaten-Management wählbar.

Ihr Thema ist mit dabei? Sie haben sich und Ihre aktuellen Herausforderungen widererkannt und wünschen sich dafür Beratung und Begleitung von QUNIS und unseren Experten?

Sprechen Sie einfach Ihren QUNIS-Berater*in an oder schreiben Sie direkt eine E-Mail an team@qunis.de und verraten Sie uns ein wenig mehr zu Ihrer Motivation, Ihren Zielen und Vorhaben. Wir freuen uns auf den Austausch und die Diskussion mit Ihnen.

Modern Data Worker: Wer sie sind, wie sie sich unterscheiden, was sie antreibt?

Erstellt am: Montag, 17. Januar 2022 von Monika Düsterhöft

Nicht nur die Menge und Verfügbarkeit von Daten, auch das Thema Datenarbeit und die Aufgaben, die sich drumherum ranken, haben sich in den letzten Jahren rasant verändert und weiterentwickelt.

Zu den Experten und Spezialistinnen für Business Intelligence (BI), die vor allem in den Finance & Controlling-Abteilungen, bei Software-Anbietern und Beratungshäusern zu finden waren und die von jeher das Thema Data Management besetzt hatten, sind mit dem unternehmensweiten Einzug von Digitalisierung, Big Data, Cloud-Services sowie der Demokratisierung von Daten neue Anforderungen und Bedarfe hinzugekommen.

Neue Aufgaben, Rollen und Berufsbilder haben sich herausgebildet und die Data Scientisten, Data Architekten und Data Engineers sind auf der Bildfläche erschienen.

Allen gemein ist zunächst das Interesse an und die Arbeit mit Daten – aber was genau ist ihr Ziel, was macht sie speziell, was macht sie glücklich und mit welchen Technologien und Methoden arbeiten sie? Wie funktionieren sie zusammen und wo unterscheiden sie sich? Nachfolgend haben wir eine kleine Einordnung für Sie zusammengestellt. Diese soll helfen, die verschiedenen Disziplinen der Modern Data Worker ein wenig besser zu verstehen:

1. BI & Data Manager

BI steht für Business Intelligence und das wiederum steht für Geschäftsanalytik. Kurzum: die systematische Analyse von verfügbaren, meist in strukturierter Form vorliegender Unternehmensdaten. Ziel dabei ist es, möglichst optimale Entscheidungen für das Unternehmen treffen zu können bzw. die Entscheidungsprozesse bestmöglich mit Erkenntnissen aus Daten zu unterstützen sowie Geschäftsabläufe, Kunden- und Lieferantenbeziehungen zu verbessern.

Ein BI & Data Manager legt die Grundlage dafür, in dem verschiedenste Datenquellen angebunden und die relevanten Daten in ein Data Warehouse bzw. einen Data Lake integriert werden. Dafür müssen Schnittstellen zu den unterschiedlichen Datenquellsystemen geschaffen, Daten miteinander verknüpft und formatiert sowie schrittweise veredelt werden.

Ein weiterer zentraler Aspekt ist die Umsetzung der übergreifenden Geschäftslogik, damit die Daten am Ende auch in einer einheitlichen und vergleichbaren Form vorliegen. Dies können unterschiedlichste Logiken sein wie z. B. die Historisierung von Daten, Datenqualitätsprüfungen oder eine einheitliche Währungsumrechnung. Ein Data Manager liefert mit dem Aufbau und der Bereitstellung von logischen Datenmodellen das zentrale Fundament für darauf aufbauende Reports, Dashboards oder weiterführende Analysen.

Im Bereich des Information Designs werden die bereitgestellten Daten mit einem geeigneten Frontend-Werkzeug wie beispielsweise Excel, Power BI, Pyramid Analytics oder vergleichbaren Tools visualisiert und je nach Zielgruppe entsprechend aufbereitet. Hier spielt die Art und Weise der Darstellung eine zentrale Rolle, Standards für die Visualisierung und fokussiertes Data Storytelling sind in dieser Disziplin entscheidende Erfolgsfaktoren.

Ein BI & Data Manager liebt Daten und deren Aufbereitung bis zur passenden Visualisierung. In diesen Bereichen fühlt er sich wohl und löst so manche Knobelaufgabe, wenn es darum geht, wie man bestmöglich die Daten für Endanwender, Power User oder Analysten vorbereiten und bereitstellen kann.

2. Data Scientists

Während die BI-Welt auf sauber aufbereiteten, tabellarisch strukturierten Daten fußt, geht es in der Data-Science-Disziplin etwas wilder zu. Hier werden analytische Applikationen entwickelt, indem entsprechende Technologien wie u. a. Machine Learning oder Data-Science-Plattformen eingesetzt werden. Zudem ist ein tiefes Prozessverständnis erforderlich, damit die Anforderungen der Fachanwender an die Analyseergebnisse auch interpretiert werden können.

Vor einem Data Scientist sind auch unaufbereitete, untabellarische, unstrukturierte Daten nicht sicher: Data Scientists werten nicht nur strukturierte Tabellen aus, sondern auch Fotos, Texte, Videos und Sprachnachrichten. Dafür ist es häufig erforderlich, diese heterogenen Datenbestände vor- bzw. aufzubereiten. Um eine grundlegende Struktur in die Daten zu bekommen, nutzen sie mathematische bzw. statistische Algorithmen, Verfahren zum Clustern der Daten und zum Erkennen von Anomalien.

Data Scientists adaptieren die neuesten Verfahren zur Datenauswertung, sie arbeiten in Python und R und bauen dabei vor allem auf die Open-Source-Welt; Docker, Kubernetes, Tensorflow und github sind aus ihrem Arbeitsalltag nicht wegzudenken. Data Scientists arbeiten sehr eng mit Data Engineers zusammen. Diese kümmern sich um die gesamte Dateninfrastruktur, damit die Data Scientists ihre komplizierten Berechnungen und Datenauswertungen realisieren können.

3. Data Architects

Bevor ein Data Engineer die Dateninfrastruktur jedoch erstellen kann, sollte ein Data Architect sie konzipieren. Das kann man sich so vorstellen wie beim Hausbau: Architekten planen hier zunächst, wie ein Haus gebaut oder umgebaut werden soll. Sie berücksichtigen dabei technische, wirtschaftliche, funktionale und gestalterische Aspekte und sind dafür zuständig, dass am Ende alles zusammenpasst und das Haus nicht einstürzt. Data Architects sind ihre Pendants in der IT-Landschaft.

Ein Data Architect ist für die Gesamtarchitektur einer Datenplattform verantwortlich – insbesondere dann, wenn komplexere Strukturen aufgebaut werden müssen. Dazu gehören die Definition und Anwendung von Architekturrichtlinien und Methoden sowie der Aufbau von Leitlinien für die Systemarchitektur und die damit verbundenen Einsatzbereiche von entsprechenden Technologien.

Diese komplexeren Strukturen fangen meist da an, wo die klassische BI-Welt aufhört – wo Big Data anfängt: dort, wo Daten in Echtzeit verarbeitet werden müssen, dort, wo unstrukturierte Daten verarbeitet werden und dort, wo hoch frequentierte Daten in kurzer Zeit verarbeitet werden. Beim Einsatz von Sensoren, die in Sekundenabständen Daten erzeugen, entstehen beispielsweise hochfrequentierte Daten. Müssen diese Daten noch in real-time – also sofort, in Echtzeit verarbeitet werden, dann erhöht sich die Komplexität zusätzlich.

Der Einsatz von Algorithmen oder anderer Analyseverfahren, wie etwa im Data-Science-Bereich, erfordert beispielsweise punktuell sehr hohe Rechenpower über einen begrenzten Zeitraum. Hier kommt dann auch die Infrastruktur mit ins Spiel, die den unterschiedlichen Anforderungen der verschiedenen Disziplinen gerecht werden muss. Die Vielfalt der technologischen Möglichkeiten, insbesondere im Cloud-Umfeld, stellen hohe Anforderungen an die Datenarchitektur. Ein Data Architect stellt sicher, dass die geforderten Anwendungsszenarien mit der angedachten Architektur und den dafür vorgesehenen Technologien umgesetzt werden können.

4. Data Engineers

Ein Data Engineer ist ein Spezialist für Datenmanagement insbesondere im Big-Data-Umfeld. Seine Arbeit umfasst die Konzeption und Implementierung von Datenintegrations- und Transformationsprozessen zur Unterstützung datengetriebener Use Cases und Data-Science-Projekte, damit eine bestmögliche Datenvorbereitung ermöglicht wird. In diesem Zusammenhang legen Data Engineers den Fokus auf die Entwicklung von analyseoptimierten Datenarchitekturen.

Data Engineers und Data Scientists arbeiten oft eng zusammen, wobei der Fokus des Data Engineers darauf liegt, Daten aus unterschiedlichsten Quellen und Formaten aufzubereiten, zu organisieren und die erforderlichen Datenpipelines aufzubauen sowie diese zu betreiben. Data Engineers arbeiten somit an der Schnittstelle zwischen Infrastruktur und Datenmanagement, überwachen Datenquellen und steuern Integrationsprozesse sowie die Instanzen, die für die Analyse und Weiterverwendung der generierten Daten zuständig sind.

In dem Sinne ist ein Data Engineer für alle Prozesse rund um das Generieren, Speichern, Pflegen, Aufbereiten, Anreichern und Weitergeben von Daten verantwortlich. Zudem ist für einen Data Engineer von hoher Bedeutung, dass die bereitgestellten Lösungen performant laufen und kontinuierlich optimiert werden. Über ein entsprechendes Monitoring hat ein Data Engineer alles im Blick.

Eng verknüpft mit Big Data, ist die Disziplin des Data Engineering noch vergleichsweise jung und stetig in der Weiterentwicklung. Data Engineers müssen sich daher stets am technischen Fortschritt orientieren, um der Entwicklung nicht hinterherzuhängen und sich in neue Frameworks, Konzepte und Technologien einarbeiten.

Mit Strategie, Roadmap, klaren Visualisierungskonzepten sowie der bewussten Verankerung in der Organisation ans Ziel

Damit datengetriebene Lösungen entstehen und nachhaltig funktionieren, sind weitere Rollen und Disziplinen gefordert und arbeiten mit den Modern Data Workern Hand in Hand. Gerne erzählen wir Ihnen auch dazu mehr. Sprechen Sie einfach Ihren QUNIS-Berater*in an oder schreiben Sie direkt eine E-Mail an team@qunis.de und verraten Sie uns ein wenig mehr zu Ihrer Motivation, Ihren Zielen und Vorhaben. Wir freuen uns auf den Austausch mit Ihnen.

Neues Start-up ergänzt das QUNIS-Firmennetzwerk

Erstellt am: Mittwoch, 24. November 2021 von Monika Düsterhöft

Sein Name ist TEQWERK – sein Programm ist Cloud Computing

TEQWERK, von Hermann Hebben und Steffen Vierkorn gemeinsam mit Christopher Heid gegründet, ergänzt das Netzwerk rund um QUNIS ab sofort mit einem auf Cloud Computing fokussierten Expertenhaus. Für Christopher Heid, der zuvor als Cloud Solution Architect bei QUNIS tätig war und dort vor allem das Cloud-Infrastruktur-Geschäftsfeld mit entwickelt und aufgebaut hat, erfüllt sich mit TEQWERK ein Traum und die Vision, Cloud Computing nicht als Nische, sondern als Gesamtauftrag zu leben.

 Ich bin davon überzeugt, dass die Cloud mehr kann, als sie momentan in vielen Unternehmen darf. Denn die Cloud ist das Fundament für die Digitalisierung von Unternehmensprozessen und Produkten. Bei richtigem Einsatz erhöht sie – entgegen weit verbreiteter Gerüchte – die Sicherheit und den Datenschutz und kann gleichzeitig zu signifikanten Kosteneinsparungen führen. 

Christoper Heid,
bekennender Cloud-Native-Verfechter
und Geschäftsführer von TEQWERK


Vom Mittelständler bis hin zum Konzern: TEQWERK begleitet Unternehmen auf ihrer Reise in eine moderne IT-Infrastruktur

Vom kurzfristigen Helfer bis zur langfristigen Cloud-Strategie, der Applikationsmigration und dem digitalen Arbeitsplatz, sprich Lösungen für eine digitale und vernetzte Zusammenarbeit innerhalb des Unternehmens: Das TEQWERK-Team unterstützt seine Kunden ganzheitlich bei allen Cloud-Initiativen unter anderem mit folgenden Services:

  • Cloud-Strategie-Entwicklung unter Einbezug aller relevanten, technischen und organisatorischen Aspekte.
  • Cloud-native-Lösungen für bestehende und neue Anwendungen.
  • Effektiver Schutz vor Cyber-Angriffen mit Zero Trust und künstlicher Intelligenz.
  • Digitale Arbeitsplätze aus der Cloud für ein modernes und vernetztes Arbeiten.
  • Training & Coaching für langfristige Projekterfolge und die Verankerung des Betriebsmodells in der Organisation.
  • Managed-Cloud-Lösungen für maximalen Komfort und bestmögliche Sicherheit zu kalkulierbaren Kosten.

 

Konkrete Unterstützung für ganzheitliche Cloud-Initiativen

Viele Unternehmen sind die letzten Jahre mehr oder weniger planlos in die Cloud gestartet. Dadurch sind oftmals Insellösungen mit verschiedensten Zugängen und ohne standardisierte Sicherheitsrichtlinien oder Transparenz über die Datenspeicherorte entstanden. Die Lösungen skalieren entgegen der Erwartung nicht und sind verwaltungstechnisch oftmals ein Chaos. Anstelle weniger ist die Verwaltung sogar oftmals aufwändiger geworden. TEQWERK fängt diese Inseln basierend auf seinem Cloud Adoption Framework ein und etabliert ein Cloud-Betriebsmodell. So kann die Cloud ihre Stärken entwickeln und wirklich Spaß machen.

Oftmals können IT-Organisationen auch einfach mit ihrer On-Premise-Welt nicht mit der Geschwindigkeit mithalten, die die Fachbereiche fordern. In der Folge wird die Enterprise-IT per Kreditkarte umgangen und der Fachbereich bezieht seine Cloud-Dienste selbst. TEQWERK setzt hier ein den Bedürfnissen entsprechendes Cloud-Fundament auf und coacht IT-Organisation Schritt für Schritt in die Cloud.

Zudem wird in den Unternehmen nicht selten schwarz-weiß gedacht: Entweder die Cloud ist toll oder schrecklich, dazwischen gibt es häufig nicht viel. TEQWERK entwickelt mit seinen Kunden eine Cloud-Strategie, die den individuellen Anforderungen Rechnung trägt, damit sich für vertrauenswürdige Anbieter die Tür öffnet und unsichere Cloud-Angebote ausgeschlossen werden können.

Unternehmen, die sich der Cloud in Gänze verschließen, schneiden sich damit auch den Zugang zu Innovationen ab. Mit dem Cloud Discovery Workshop zeigt TEQWERK auf, welches Potenzial in der Cloud schlummert und wie ein Wandel von No-Cloud zu Cloud-ready gelingen kann.

Welcher Hyperscaler, ob Amazon, Google oder Microsoft, schlussendlich zum Einsatz kommt, ist für den Projekterfolg nicht entscheidend

Für eine erfolgreiche Cloud-Initiative stehen bei TEQWERK die sonst leider noch viel zu oft außen vor gelassenen Fragestellungen zu Nutzen, Aufwand und Zielen an erster Stelle. Hat man hier ein klares Bild entwickelt, wird die zweite Stufe gezündet und die operative Cloud-Journey mit TEQWERK gestartet. Basis dafür bilden Blueprints, erprobte Cloud-Architekturen sowie Best-Practises im Umgang mit der Cloud. Das Ziel ist die Schaffung einer werthaltigen Lösung, damit IT-Organisationen das Cloud-Potenzial erkennen und nachhaltig für ihr Unternehmen heben.

Lust auf mehr Cloud?

Mehr zu TEQWERK, den  Angeboten und Kompetenzen finden Sie auf der TEQWERK HOMEPAGE

Fachkonzeption… muss das sein?

Erstellt am: Mittwoch, 7. April 2021 von Monika Düsterhöft

Die Vielfalt an technischen Möglichkeiten sowie das Streben nach pragmatisch schnellen Ergebnissen verleiten gerne dazu, die Fachkonzeption zu vergessen. Sollten Sie aber nicht!

Bei der Umsetzung von Data & Analytics-Projekten befinden sich Organisationen häufig im Spannungsfeld zwischen einerseits einer hohen Erwartungshaltung der potenziellen Anwender, geweckt durch die Vielzahl an technischen Möglichkeiten und der Leistungsfähigkeit am Markt erhältlicher Produkte, und andererseits dem eigenen Bestreben, Projekte schnell zum Erfolg zu führen.

Die erfolgsentscheidende fachliche Konzeption und Definition der umzusetzenden Anforderungen kommt dabei oftmals zu kurz und Lösungen werden zu pragmatisch realisiert. Damit die wichtige Phase der fachlichen Konzeption nicht unter den Tisch und ihr Fehlen Ihnen nachträglich vor die Füße fällt, habe ich für Sie, basierend auf unserer Projekterfahrung, eine Liste mit hilfreichen Hinweisen zusammengestellt.

Die folgenden acht Punkte geben Ihnen eine Orientierung, wie Sie beim Erstellen einer Fachkonzeption vorgehen und auf was Sie achten sollten.

1. Anwendungsfälle nutzenorientiert definieren

Anwendungsfälle benötigen eine strukturierte Beschreibung und klare Zielsetzung. Neben einer fachlichen Beschreibung der fachlichen Anforderungen, den Voraussetzungen für die Umsetzung sowie die benötigten Daten und deren Herkunft, müssen vor allem die Ziele inklusive der damit verbundenen Nutzenfaktoren beschrieben sein und diesen die erwarteten Aufwände gegenübergestellt werden.

Somit wird die Priorisierung von Use Cases erheblich unterstützt bzw. erleichtert sowie die Basis geschaffen für eine spätere Analyse der Nachhaltigkeit bzw. des tatsächlich erreichten Business Nutzens.

2. Umfang von Anwendungsfällen für Data & Analytics festlegen

Eine Zielrichtung für Data & Analytics-Initiativen ist essenziell, um wichtige Basisparameter und Fragestellung für das Projekt zu definieren. Von daher sollten die geplanten Einsatzbereiche und angestrebten Lösungen abgesteckt, grob priorisiert und auf einer Roadmap festgehalten werden.

3. Zentrale Themen ganzheitlich betrachten

Beim Aufbau einer Data & Analytics-Landschaft und der Umsetzung der verschiedenen Szenarien gibt es übergreifende Themengebiete mit zentraler Bedeutung, die einheitlich und zu Beginn des ersten Anwendungsfalles für alle weiteren mit definiert werden sollten.

Dazu zählen unter anderem:

  • Infrastrukturfragestellungen
  • Security- und Zugriffskonzepte
  • Anforderungen an die Datenharmonisierung
  • Datenqualität und -hoheit in Abstimmung mit den Quellsystemen

4. Mit kleinen Schritten starten

Erste Anwendungsfälle sollten keinesfalls zu groß dimensioniert werden. Gerade für den Einstieg in Data & Analytics-Projekte ist es wichtig, Pilotprojekte überschaubar zu definieren, damit Ergebnisse und damit verbundene Erfolge sichtbar bzw. Nutzenvorteile in der Organisation spürbar werden. Nicht zu unterschätzen ist neben den ersten spürbaren Ergebnissen auch eine Lernkurve, die das gesamte involvierte Team durchschreitet.

5. Fachliche Feinkonzeption bildet das stabile Fundament

Sobald die Roadmap für Anwendungsfälle festgelegt ist, müssen die zuerst priorisierten fachlich im Detail spezifiziert werden. Hier sollte immer von den Anforderungen der Anwender ausgegangen werden. Dies kann z.B. bei einem Reporting Use Case die Visualisierung der Daten, Definition von Kennzahlen und deren Berechnung, benötigte Dimensionen sowie das zugrunde legende fachliche Datenmodell sein.

Diese fachlichen Anforderungen gilt es dann in ein technisches Konzept für die Realisierung zu transformieren und die erforderlichen Rahmenparameter für die Implementierung festzulegen, der ein zentrales technisches Datenmodell mit einer Anbindung der notwendigen Quellsysteme zugrunde liegt.

6. Aufwände realistisch und verlässlich abschätzen

Auf Basis der Feinkonzeption kann eine valide und möglichst realitätsnahe Schätzung der Aufwände für die Implementierung erfolgen. Somit kann abschließend bewertet werden, wie viel Aufwand erforderlich ist, um den gegenüberstehenden Business-Nutzen zu erzielen.

7. Management Freigabe einholen

Für die umzusetzenden Use Cases sollte neben der Roadmap auch eine Freigabe der Budgets für die geplanten Anwendungsfällen durch das verantwortliche Management erfolgen.

8. Data & Analytics-Projekte effizient steuern

Um eine möglichst effiziente und zielgerichtete Projektsteuerung zu erreichen, sollten für die verschiedenen Projektphasen die am besten geeigneten Methoden angewendet werden.

  • Die Erfahrung zeigt, dass Best Practices für Analytics-Projekte eine Verzahnung von klassischen und agilen Methoden erfordern.
  • Übergreifende Themen wie beispielsweise die Definition einer Strategie und Roadmap, Konzeption und Priorisierung der Umsetzungsplanung werden eher klassisch gesteuert.
  • Die technische Umsetzung erfordert agile Methoden. Spezifizierte Anwendungsfälle werden gemäß der Umsetzungsplanung in die agile Projektsteuerung übergeben und dann iterativ umgesetzt.

Zusammenfassend kann man festhalten, dass neben einer strategischen Planung und Ausrichtung einer Data & Analytics-Initiative die Aufteilung des Gesamtvorhabens in einzelne Anwendungsfälle und deren Konzeption erfolgsentscheidend ist, ohne das große Ganze aus dem Blick zu verlieren und einen stetigen Projektfortschritt und damit verbundene Erfolge zu erreichen.

Mein Tipp: Gerne informiere ich Sie, wie wir diese acht Schritte gemeinsam mit Ihnen gehen. Sprechen Sie mich einfach an. Sie finden mich auf LinkedIn oder schreiben Sie mir hier, ich melde mich gerne bei Ihnen. KONTAKT